Variant of Newton’s Method Using Simpson’s 3/8th Rule

被引:0
|
作者
Singh M.K. [1 ]
Singh A.K. [1 ]
机构
[1] Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi
关键词
Newton’s method; Order of convergence; Simpson’s 3/8th formula; Weak condition;
D O I
10.1007/s40819-020-0770-4
中图分类号
学科分类号
摘要
The main objective of this work is to present a new closed type third order variant of Newton’s method for solving system of nonlinear equations, which not only accelerates the Newton’s method but also removes its certain limitations. For this purpose we applied Simpson’s three eighth rule instead of trapezoid and rectangle in approximating the integral and thereby reducing the error. Numerical results show that the method is superior to the same order existing methods and well compete with some higher order methods. © 2020, Springer Nature India Private Limited.
引用
收藏
相关论文
共 50 条
  • [21] An Analytical Study of Alternative Method for Solving Lotka's Law with Simpson's 1/3 Rule
    Basu, Anindya
    Dutta, Bidyarthi
    JOURNAL OF SCIENTOMETRIC RESEARCH, 2024, 13 (02) : 466 - 474
  • [22] Using Simpson's Rule in different transition curves
    Pirti, Atinc
    Simsek, Merve
    Gundogan, Zeynep Ors
    GEOMATIK, 2022, 7 (02): : 106 - 111
  • [23] AllerGen’s 8th research conference
    Marie-Claire Arrieta
    Andrea Arevalos
    Leah Stiemsma
    Marta E. Chico
    Carlos Sandoval
    Minglian Jin
    Jens Walter
    Phil Cooper
    Brett Finlay
    Emilie Bernatchez
    Matthew J. Gold
    Anick Langlois
    Pascale Blais-Lecours
    Caroline Duchaine
    David Marsolais
    Kelly M. McNagny
    Marie-Renée Blanchet
    Jordan Brubacher
    Bimal Chhetri
    Kelly Sabaliauskas
    Kate Bassil
    Jeff Kwong
    Frances Coates
    Tim K. Takaro
    Angela Chow
    Gregory E. Miller
    Edith Chen
    Piushkumar J. Mandhane
    Stuart E. Turvey
    Susan J. Elliott
    Allan B. Becker
    Padmaja Subbarao
    Malcolm R. Sears
    Anita L. Kozyrskyj
    Aimée Dubeau
    Zihang Lu
    Susan Balkovec
    Krzysztof Kowalik
    Per Gustafsson
    Felix Ratjen
    Rachel D. Edgar
    Nicole R. Bush
    Julie L. MacIssac
    Lisa M. McEwen
    Thomas W. Boyce
    Michael S. Kobor
    Melanie Emmerson
    Aimée Dubeau
    Zihang Lu
    Bingqing Shen
    Allergy, Asthma & Clinical Immunology, 12 (Suppl 2)
  • [24] Editor's note for 8th issue
    Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
    不详
    J. Hydro-Environ. Res., 2009, 4 (211):
  • [25] Plotkin's Vaccines, 8th Edition
    Rodriguez-Morales, Alfonso J.
    TRAVEL MEDICINE AND INFECTIOUS DISEASE, 2023, 55
  • [26] DEGROOT'S ENDOCRINOLOGY, 8TH EDITION
    Corin, Habil
    ACTA ENDOCRINOLOGICA-BUCHAREST, 2022, 18 (03) : 406 - 406
  • [28] Simpson’s 3/8–based method stability analysis for milling processes
    Chunjing Liu
    Dunbing Tang
    Shengfeng Li
    Guohua Ding
    The International Journal of Advanced Manufacturing Technology, 2021, 114 : 671 - 682
  • [29] Simpson's rule is exact for quintics
    Talman, LA
    AMERICAN MATHEMATICAL MONTHLY, 2006, 113 (02): : 144 - 155
  • [30] A constructive proof of Simpson's Rule
    Coquand, Thierry
    Spitters, Bas
    JOURNAL OF LOGIC AND ANALYSIS, 2012, 4