Ultrasonic strengthening improves tensile mechanical performance of fused deposition modeling 3D printing

被引:1
|
作者
Guiwei Li
Ji Zhao
Jili Jiang
Hao Jiang
Wenzheng Wu
Mengxin Tang
机构
[1] Jilin University,School of Mechanical Science and Engineering
来源
The International Journal of Advanced Manufacturing Technology | 2018年 / 96卷
关键词
3D printing; Ultrasonic strengthening; Fused deposition modeling; Additive manufacturing;
D O I
暂无
中图分类号
学科分类号
摘要
Wire-by-wire and layer-by-layer printing processes used in fused deposition modeling (FDM) three-dimensional (3D) printed parts result in poor mechanical properties. In this study, 3D printed acrylonitrile butadiene styrene (ABS) samples strengthened by ultrasonic vibrations are studied by a controlled variate method. The effects of ultrasonic strengthening pressure and ultrasonic strengthening time on the tensile mechanical properties of samples are studied. The tensile strength of the samples increases by 11.3%, the Young’s modulus increases by 16.7%, and the surface roughness decreases after ultrasonic strengthening. Ultrasonic strengthening after FDM 3D printing significantly improves the tensile mechanical properties of the sample and broadens the potential applications for FDM 3D printing technology.
引用
收藏
页码:2747 / 2755
页数:8
相关论文
共 50 条
  • [31] Fused Deposition Modeling 3D Printing in Oral and Maxillofacial Surgery: Problems and Solutions
    Kamio, Takashi
    Onda, Takeshi
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2022, 14 (09)
  • [32] Generic roughness meta-model in 3D printing by Fused Deposition Modeling
    Elnaz Asadollahi-Yazdi
    Julien Gardan
    Pascal Lafon
    Progress in Additive Manufacturing, 2022, 7 : 399 - 410
  • [33] Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs
    Kollamaram, Gayathri
    Croker, Denise M.
    Walker, Gavin M.
    Goyanes, Alvaro
    Basit, Abdul W.
    Gaisford, Simon
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2018, 545 (1-2) : 144 - 152
  • [34] Coal polymer composites prepared by fused deposition modeling (FDM) 3D printing
    Shuyang Zhang
    Muhammad Zia ur Rehman
    Samarthya Bhagia
    Xianzhi Meng
    Harry M. Meyer
    Hsin Wang
    Michael R. Koehler
    Kalsoom Akhtar
    David P. Harper
    Arthur J. Ragauskas
    Journal of Materials Science, 2022, 57 : 10141 - 10152
  • [35] Coal polymer composites prepared by fused deposition modeling (FDM) 3D printing
    Zhang, Shuyang
    ur Rehman, Muhammad Zia
    Bhagia, Samarthya
    Meng, Xianzhi
    Meyer, Harry M., III
    Wang, Hsin
    Koehler, Michael R.
    Akhtar, Kalsoom
    Harper, David P.
    Ragauskas, Arthur J.
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (22) : 10141 - 10152
  • [36] Determination of Material Requirements for 3D Gel Food Printing Using a Fused Deposition Modeling 3D Printer
    In, Jiwon
    Jeong, Haeun
    Song, Sanghoon
    Min, Sea C.
    FOODS, 2021, 10 (10)
  • [37] Polymer Materials for 3D Printing (Fused Deposition Modelling)
    Brovina S.D.
    Guivan M.Y.
    Mastalygina E.E.
    Olkhov A.A.
    Polymer Science - Series D, 2024, 17 (02) : 450 - 454
  • [38] Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process
    Hwang, Seyeon
    Reyes, Edgar I.
    Moon, Kyoung-sik
    Rumpf, Raymond C.
    Kim, Nam Soo
    JOURNAL OF ELECTRONIC MATERIALS, 2015, 44 (03) : 771 - 777
  • [39] Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process
    Seyeon Hwang
    Edgar I. Reyes
    Kyoung-sik Moon
    Raymond C. Rumpf
    Nam Soo Kim
    Journal of Electronic Materials, 2015, 44 : 771 - 777
  • [40] 3D and 4D printing: A review of virgin polymers used in fused deposition modeling
    Makki, Tarig
    Vattathurvalappil, Suhail Hyder
    Theravalappil, Rajesh
    Nazir, Aamer
    Alhajeri, Ali
    Azeem, Mohammed Abdul
    Mahdi, Elsadig
    Ummer, Aniz Chennampilly
    Ali, Usman
    COMPOSITES PART C: OPEN ACCESS, 2024, 14