Ultrasonic strengthening improves tensile mechanical performance of fused deposition modeling 3D printing

被引:1
|
作者
Guiwei Li
Ji Zhao
Jili Jiang
Hao Jiang
Wenzheng Wu
Mengxin Tang
机构
[1] Jilin University,School of Mechanical Science and Engineering
关键词
3D printing; Ultrasonic strengthening; Fused deposition modeling; Additive manufacturing;
D O I
暂无
中图分类号
学科分类号
摘要
Wire-by-wire and layer-by-layer printing processes used in fused deposition modeling (FDM) three-dimensional (3D) printed parts result in poor mechanical properties. In this study, 3D printed acrylonitrile butadiene styrene (ABS) samples strengthened by ultrasonic vibrations are studied by a controlled variate method. The effects of ultrasonic strengthening pressure and ultrasonic strengthening time on the tensile mechanical properties of samples are studied. The tensile strength of the samples increases by 11.3%, the Young’s modulus increases by 16.7%, and the surface roughness decreases after ultrasonic strengthening. Ultrasonic strengthening after FDM 3D printing significantly improves the tensile mechanical properties of the sample and broadens the potential applications for FDM 3D printing technology.
引用
收藏
页码:2747 / 2755
页数:8
相关论文
共 50 条
  • [1] Ultrasonic strengthening improves tensile mechanical performance of fused deposition modeling 3D printing
    Li, Guiwei
    Zhao, Ji
    Jiang, Jili
    Jiang, Hao
    Wu, Wenzheng
    Tang, Mengxin
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 96 (5-8): : 2747 - 2755
  • [2] The Fused Deposition Modeling 3D Printing
    Yan, Longwei
    Sun, Huichao
    Qu, Xingtian
    Zhou, Wei
    Proceedings of the 2016 International Conference on Electrical, Mechanical and Industrial Engineering (ICEMIE), 2016, 51 : 201 - 203
  • [3] Elasto-Plastic Mechanical Modeling of Fused Deposition 3D Printing Materials
    Bandinelli, Francesco
    Peroni, Lorenzo
    Morena, Alberto
    POLYMERS, 2023, 15 (01)
  • [4] Thermoplastic Elastomer for 3D Printing by Fused Deposition Modeling
    M. V. Timoshenko
    S. V. Balabanov
    M. M. Sychev
    D. I. Nikiforov
    Polymer Science, Series A, 2021, 63 : 652 - 656
  • [5] Thermoplastic Elastomer for 3D Printing by Fused Deposition Modeling
    Timoshenko, M., V
    Balabanov, S., V
    Sychev, M. M.
    Nikiforov, D., I
    POLYMER SCIENCE SERIES A, 2021, 63 (06) : 652 - 656
  • [6] Plasticized Protein For 3D Printing By Fused Deposition Modeling
    Chaunier, Laurent
    Leroy, Eric
    Della Valle, Guy
    Lourdin, Denis
    PROCEEDINGS OF THE 19TH INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING (ESAFORM 2016), 2016, 1769
  • [7] 3D Printing Of Maize Protein By Fused Deposition Modeling
    Chaunier, Laurent
    Leroy, Eric
    Della Valle, Guy
    Dalgalarrondo, Michele
    Bakan, Benedicte
    Marion, Didier
    Madec, Baptiste
    Lourdin, Denis
    PROCEEDINGS OF PPS-32: THE 32ND INTERNATIONAL CONFERENCE OF THE POLYMER PROCESSING SOCIETY, 2017, 1914
  • [8] Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing
    Weng, Zixiang
    Wang, Jianlei
    Senthil, T.
    Wu, Lixin
    MATERIALS & DESIGN, 2016, 102 : 276 - 283
  • [9] THERMOPLASTICS 3D PRINTING USING FUSED DEPOSITION MODELING ON FABRICS
    Blais, Maxwell
    Tomlinson, Scott
    Khoda, Bashir
    PROCEEDINGS OF ASME 2021 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION (IMECE2021), VOL 3, 2021,
  • [10] Sustainable Materials for Fused Deposition Modeling 3D Printing Applications
    Rett, Jennifer P.
    Traore, Yannick L.
    Ho, Emmanuel A.
    ADVANCED ENGINEERING MATERIALS, 2021, 23 (07)