A Subspace Cascadic Multigrid Method for Mortar Elements

被引:1
|
作者
D. Braess
P. Deuflhard
K. Lipnikov
机构
[1] Faculty of Mathematics Ruhr-University D-44780 Bochum Germany e-mail: braess@num.ruhr-uni-bochum.de,
[2] Department of Mathematics University of Houston Houston TX 77204-3476 USA e-mail: lipnikov@math.uh.edu,undefined
[3] Konrad-Zuse-Zentrum Berlin (ZIB) & Freie Universität Berlin Takustrasse 7 & Arnimallee 2–6 D-14195 Berlin Germany e-mail: deuflhard@zib.de,undefined
来源
Computing | 2002年 / 69卷
关键词
AMS Subject Classification: 65N55.; Keywords: cascadic multigrid method, domain decomposition, mortar elements, non-matching grids, material jumps.;
D O I
暂无
中图分类号
学科分类号
摘要
A cascadic multigrid (CMG) method for elliptic problems with strong material jumps is proposed and analyzed. Non–matching grids at interfaces between subdomains are allowed and treated by mortar elements. The arising saddle point problems are solved by a subspace confined conjugate gradient method as smoother for the CMG. Details of algorithmic realization including adaptivity are elaborated. Numerical results illustrate the efficiency of the new subspace CMG algorithm.
引用
收藏
页码:205 / 225
页数:20
相关论文
共 50 条
  • [41] Cascadic Multigrid Method for The Elliptic Monge-Ampere Equation
    Liu, Zhiyong
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2016, 20 (04) : 674 - 687
  • [42] A type of cascadic multigrid method for coupled semilinear elliptic equations
    Xu, Fei
    Huang, Qiumei
    NUMERICAL ALGORITHMS, 2020, 83 (02) : 485 - 510
  • [43] Overlapping Domain Decomposition Method with Cascadic Multigrid for Image Restoration
    Chu, Zhaoteng
    Li, Chenliang
    MATHEMATICS, 2023, 11 (10)
  • [44] Cascadic multigrid methods for parabolic problems
    Qiang Du
    PingBing Ming
    Science in China Series A: Mathematics, 2008, 51 : 1415 - 1439
  • [45] Multigrid for the mortar finite element method
    Gopalakrishnan, J
    Pasciak, JE
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (03) : 1029 - 1052
  • [46] A cascadic multigrid algorithm for the Stokes equations
    Braess, D
    Dahmen, W
    NUMERISCHE MATHEMATIK, 1999, 82 (02) : 179 - 191
  • [47] Cascadic multigrid methods for parabolic problems
    Du Qiang
    Ming PingBing
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (08): : 1415 - 1439
  • [48] Cascadic multigrid methods for parabolic problems
    DU Qiang1&MING PingBing2 1Department of Mathematics
    Science in China(Series A:Mathematics), 2008, (08) : 1415 - 1439
  • [49] Cascadic multigrid method for P1-nonconforming quadrilateral element
    Wang, C.
    Huang, Z.
    Li, L.
    JOURNAL OF NUMERICAL MATHEMATICS, 2008, 16 (03) : 237 - 248
  • [50] An Edge-based cascadic multigrid method for H(curl) problems
    Wang, Jinxuan
    Pan, Kejia
    Wu, Xiaoxin
    NUMERICAL ALGORITHMS, 2024,