Maximum Likelihood Approach for RFID Tag Set Cardinality Estimation with Detection Errors

被引:0
|
作者
Chuyen T. Nguyen
Kazunori Hayashi
Megumi Kaneko
Petar Popovski
Hideaki Sakai
机构
[1] Kyoto University,Graduate School of Informatics
[2] Aalborg University,Department of Electronic Systems
来源
关键词
RFID; Tag cardinality estimation; Maximum likelihood; Detection error;
D O I
暂无
中图分类号
学科分类号
摘要
Estimation schemes of Radio Frequency IDentification (RFID) tag set cardinality are studied in this paper using Maximum Likelihood (ML) approach. We consider the estimation problem under the model of multiple independent reader sessions with detection errors due to unreliable radio communication links and/or collisions. In every reader session, both the detection error probability and the total number of tags are estimated. In particular, after the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document}-th reader session, the number of tags detected in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j$$\end{document} (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j=1,2,...,R$$\end{document}) reader sessions out of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R$$\end{document} sessions is updated, which we call observed evidence. Then, in order to maximize the likelihood function of the number of tags and the detection error probability given the observed evidences, we propose three different estimation methods depending on how to treat the discrete nature of the tag set cardinality. The performance of the proposed methods is evaluated under different system parameters and compared with that of the conventional method via computer simulations assuming flat Rayleigh fading environments and framed-slotted ALOHA based protocol.
引用
收藏
页码:2587 / 2603
页数:16
相关论文
共 50 条
  • [21] Maximum likelihood estimation for ARMA models in the presence of ARMA errors
    Lee, JH
    Shin, DW
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1997, 26 (05) : 1057 - 1072
  • [22] Subspace tracking based blind multiuser detection: A maximum likelihood estimation approach
    Wang, N
    Zhu, WP
    Zheng, BY
    2000 INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY PROCEEDINGS, VOLS. I & II, 2000, : 1319 - 1324
  • [23] A MAXIMUM LIKELIHOOD APPROACH FOR UNDERDETERMINED TDOA ESTIMATION
    Cho, Janghoon
    Yoo, Chang D.
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 4001 - 4005
  • [24] A simple approach to maximum intractable likelihood estimation
    Rubio, F. J.
    Johansen, Adam M.
    ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 1632 - 1654
  • [25] Maximum-likelihood approach for signal estimation in direct detection experiments for Dark Matter
    Mandic, V
    Sadoulet, B
    Schnee, RW
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2005, 553 (03): : 459 - 469
  • [26] MAXIMUM-LIKELIHOOD DETECTION AND ESTIMATION OF REFLECTION COEFFICIENTS
    KORMYLO, J
    MENDEL, JM
    GEOPHYSICS, 1979, 44 (03) : 341 - 342
  • [27] MAXIMUM-LIKELIHOOD DETECTION AND ESTIMATION FOR HARMONIC SETS
    EDDY, TW
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1980, 68 (01): : 149 - 155
  • [28] A fast maximum likelihood estimation approach to LAD regression
    Li, YB
    Arce, GR
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PROCEEDINGS: SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING SIGNAL PROCESSING THEORY AND METHODS, 2004, : 889 - 892
  • [29] A maximum likelihood approach to density estimation with semidefinite programming
    Fushiki, Tadayoshi
    Horiuchi, Shingo
    Tsuchiya, Takashi
    NEURAL COMPUTATION, 2006, 18 (11) : 2777 - 2812
  • [30] Acoustic DOA Estimation: An Approximate Maximum Likelihood Approach
    Lee, Juo-Yu
    Hudson, Ralph E.
    Yao, Kung
    IEEE SYSTEMS JOURNAL, 2014, 8 (01): : 131 - 141