Existence Results for Double Phase Problem in Sobolev–Orlicz Spaces with Variable Exponents in Complete Manifold

被引:0
|
作者
Ahmed Aberqi
Jaouad Bennouna
Omar Benslimane
Maria Alessandra Ragusa
机构
[1] Sidi Mohamed Ben Abdellah University,Laboratory LAMA
[2] National School of Applied Sciences,Laboratory LAMA, Department of Mathematics
[3] Sidi Mohamed Ben Abdellah University,Dipartimento di Matematica e Informatica
[4] Faculty of Sciences Dhar El Mahraz,undefined
[5] Universitá di Catania,undefined
[6] RUDN University,undefined
来源
Mediterranean Journal of Mathematics | 2022年 / 19卷
关键词
Existence solutions; double phase problem; Sobolev–Orlicz Riemannian manifold; Nehari manifold; Primary 35J20; Secondary 35J47; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence of non-negative non-trivial solutions for a class of double-phase problems where the source term is a Caratheodory function that satisfies the Ambrosetti–Rabinowitz type condition in the framework of Sobolev–Orlicz spaces with variable exponents in complete manifold. Our approach is based on the Nehari manifold and some variational techniques. Furthermore, the Hölder ine-quality, continuous and compact embedding results are proved.
引用
收藏
相关论文
共 50 条
  • [41] MULTIPLE SOLUTIONS FOR A NEUMANN PROBLEM TYPE WITH INDEFINITE WEIGHT IN SOBOLEV SPACES WITH VARIABLE EXPONENTS
    Taarabti, Said
    El Allali, Zakaria
    Ben Haddouch, Khalil
    Saoudi, Kamel
    MATHEMATICAL REPORTS, 2021, 23 (1-2): : 249 - 264
  • [42] A free boundary problem with subcritical exponents in Orlicz spaces
    Jun Zheng
    Leandro S. Tavares
    Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 : 695 - 731
  • [43] A free boundary problem with subcritical exponents in Orlicz spaces
    Zheng, Jun
    Tavares, Leandro S.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (02) : 695 - 731
  • [44] Embedding operators of Sobolev spaces with variable exponents and applications
    Shakhmurov, Veli B.
    ANALYSIS MATHEMATICA, 2015, 41 (04) : 273 - 297
  • [46] ON THE EQUIVALENCE OF DOMAINS IN THE THEORY OF SOBOLEV SPACES WITH VARIABLE EXPONENTS
    Romanov, Alexandr Sergeevich
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 1024 - 1039
  • [47] Γ-convergence and homogenization of functionals in Sobolev spaces with variable exponents
    Amaziane, B.
    Antontsev, S.
    Pankratov, L.
    Piatnitski, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) : 1192 - 1202
  • [48] A nonlinear elasticity system in Sobolev spaces with variable exponents
    Boubakeur, Merouani
    Fayrouz, Zoubai
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2021, 64 (01): : 17 - 33
  • [49] Compact embeddings for Sobolev spaces of two variable exponents
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (12) : 3009 - 3022
  • [50] DENSITY PROPERTIES FOR FRACTIONAL SOBOLEV SPACES WITH VARIABLE EXPONENTS
    Baalal, Azeddine
    Berghout, Mohamed
    ANNALS OF FUNCTIONAL ANALYSIS, 2019, 10 (03) : 308 - 324