Existence Results for Double Phase Problem in Sobolev–Orlicz Spaces with Variable Exponents in Complete Manifold

被引:0
|
作者
Ahmed Aberqi
Jaouad Bennouna
Omar Benslimane
Maria Alessandra Ragusa
机构
[1] Sidi Mohamed Ben Abdellah University,Laboratory LAMA
[2] National School of Applied Sciences,Laboratory LAMA, Department of Mathematics
[3] Sidi Mohamed Ben Abdellah University,Dipartimento di Matematica e Informatica
[4] Faculty of Sciences Dhar El Mahraz,undefined
[5] Universitá di Catania,undefined
[6] RUDN University,undefined
来源
关键词
Existence solutions; double phase problem; Sobolev–Orlicz Riemannian manifold; Nehari manifold; Primary 35J20; Secondary 35J47; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the existence of non-negative non-trivial solutions for a class of double-phase problems where the source term is a Caratheodory function that satisfies the Ambrosetti–Rabinowitz type condition in the framework of Sobolev–Orlicz spaces with variable exponents in complete manifold. Our approach is based on the Nehari manifold and some variational techniques. Furthermore, the Hölder ine-quality, continuous and compact embedding results are proved.
引用
收藏
相关论文
共 50 条
  • [1] Existence Results for Double Phase Problem in Sobolev-Orlicz Spaces with Variable Exponents in Complete Manifold
    Aberqi, Ahmed
    Bennouna, Jaouad
    Benslimane, Omar
    Ragusa, Maria Alessandra
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (04)
  • [2] Existence Results for Singular Double Phase Problem with Variable Exponents
    Arora, Anupma
    Dwivedi, Gaurav
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [3] Existence Results for Singular Double Phase Problem with Variable Exponents
    Anupma Arora
    Gaurav Dwivedi
    Mediterranean Journal of Mathematics, 2023, 20
  • [4] SOBOLEV INEQUALITIES FOR ORLICZ SPACES OF TWO VARIABLE EXPONENTS
    Hasto, Peter
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    GLASGOW MATHEMATICAL JOURNAL, 2010, 52 : 227 - 240
  • [5] Sobolev spaces with variable exponents on complete manifolds
    Gaczkowski, Michal
    Gorka, Przemyslaw
    Pons, Daniel J.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (04) : 1379 - 1415
  • [6] Existence and multiplicity results for parameter Kirchhoff double phase problem with Hardy-Sobolev exponents
    Cheng, Yu
    Bai, Zhanbing
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (01)
  • [7] Mixed Sobolev-like inequalities in Lebesgue spaces of variable exponents and in Orlicz spaces
    Chamorro, Diego
    POSITIVITY, 2022, 26 (01)
  • [8] Mixed Sobolev-like inequalities in Lebesgue spaces of variable exponents and in Orlicz spaces
    Diego Chamorro
    Positivity, 2022, 26
  • [9] Existence results for double phase obstacle problems with variable exponents
    Omar Benslimane
    Ahmed Aberqi
    Jaouad Bennouna
    Journal of Elliptic and Parabolic Equations, 2021, 7 : 875 - 890
  • [10] Existence results for double phase obstacle problems with variable exponents
    Benslimane, Omar
    Aberqi, Ahmed
    Bennouna, Jaouad
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2021, 7 (02) : 875 - 890