Physiological and biochemical aspects and molecular mechanisms of plant adaptation to the elevated concentration of atmospheric CO2

被引:0
|
作者
A. K. Romanova
机构
[1] Russian Academy of Sciences,Institute of Basic Problems of Biology
来源
关键词
higher plants; CO; concentration in atmosphere; development; growth; photosynthesis; enzymes; feedback; signaling system; nitrogen nutrition; interaction of environmental factors;
D O I
暂无
中图分类号
学科分类号
摘要
The review of publications concerning the impact of increasing CO2 concentration in the Earth’s atmosphere (Ca) on higher terrestrial plants. The physiological changes in plants induced by increasing Ca, including growth and biochemical composition, the characteristics of photosynthesis and respiration, as well as the molecular mechanisms of the regulation of the activity of most important biosynthetic enzymes at early and late stages of the exposure to elevated Ca are under consideration. Various concepts of metabolic regulation during acclimation to increasing CO2 concentration are critically reviewed. The pathways of possible involvement of carbonic anhydrase-mediated systems of CO2 transport and concentration during C3 photosynthesis of higher plants, the metabolic and signal mechanisms of photosynthesis inhibition by carbohydrates and the role of ethylene at elevated Ca are presented. The effect of elevated Ca on plant development and source-sink relations, as well as its interaction with other environmental factors, such as mineral, primarily nitrogen nutrition, light, temperature, and water regime, are discussed in with the context of potential forecasting of the consequences of increase in Ca and temperature for the activities of various higher plant forms in the rapidly changing climate.
引用
收藏
页码:112 / 126
页数:14
相关论文
共 50 条
  • [31] The impact of global elevated CO2 concentration on photosynthesis and plant productivity
    Reddy, Attipalli R.
    Rasineni, Girish K.
    Raghavendra, Agepati S.
    CURRENT SCIENCE, 2010, 99 (01): : 46 - 57
  • [32] Molecular and Physiological Alterations in Chickpea under Elevated CO2 Concentrations
    Palit, Paramita
    Ghosh, Raju
    Tolani, Priya
    Tarafdar, Avijit
    Chitikineni, Annapurna
    Bajaj, Prasad
    Sharma, Mamta
    Kudapa, Himabindu
    Varshney, Rajeev K.
    PLANT AND CELL PHYSIOLOGY, 2020, 61 (08) : 1449 - 1463
  • [33] CO2 gas exchange and mass production during germination of radish at elevated atmospheric CO2 concentration
    Overdieck, D
    JOURNAL OF APPLIED BOTANY-ANGEWANDTE BOTANIK, 1996, 70 (5-6): : 205 - 210
  • [34] Influence of elevated atmospheric CO2 concentration on common weeds in Scandinavian agriculture
    Sæbo, A
    Mortensen, LM
    ACTA AGRICULTURAE SCANDINAVICA SECTION B-SOIL AND PLANT SCIENCE, 1998, 48 (03): : 138 - 143
  • [35] Responses of two Populus clones to elevated atmospheric CO2 concentration in the field
    Tognetti, R
    Longobucco, A
    Raschi, A
    Miglietta, F
    Fumagalli, I
    ANNALS OF FOREST SCIENCE, 1999, 56 (06) : 493 - 500
  • [36] Response of Norway spruce root system to elevated atmospheric CO2 concentration
    Radek Pokorný
    Ivana Tomášková
    Michal V. Marek
    Acta Physiologiae Plantarum, 2013, 35 : 1807 - 1816
  • [37] Response of Norway spruce root system to elevated atmospheric CO2 concentration
    Pokorny, Radek
    Tomaskova, Ivana
    Marek, Michal V.
    ACTA PHYSIOLOGIAE PLANTARUM, 2013, 35 (06) : 1807 - 1816
  • [38] Acclimation of nitrogen uptake capacity of rice to elevated atmospheric CO2 concentration
    Shimono, Hiroyuki
    Bunce, James A.
    ANNALS OF BOTANY, 2009, 103 (01) : 87 - 94
  • [39] Effect of elevated atmospheric CO2 concentration on the structure of poplar juvenile wood
    Geudens, Katrien
    De Boever, Lieven
    Van Acker, Joris
    EERSTE SYMPOSIUM INTERACTIE TUSSEN BOSBOUW EN HOUTVERWERKING, 2008, : 161 - 163
  • [40] MECHANISMS OF TOLERANCE TO SALINITY IN BANANA: PHYSIOLOGICAL, BIOCHEMICAL, AND MOLECULAR ASPECTS
    Wiladino, Lilia
    Camara, Terezinha Rangel
    Ribeiro, Marta Barbosa
    Jordao Do Amaral, Daniel Oliveira
    Suassuna, Flavia
    Da Silva, Marcia Vanusa
    REVISTA BRASILEIRA DE FRUTICULTURA, 2017, 39 (02)