The Second Nonlinear Mixed Lie Triple Derivations on Finite Von Neumann Algebras

被引:0
|
作者
Xingpeng Zhao
Xiaochun Fang
机构
[1] Tongji University,School of mathematical sciences
关键词
The second mixed Lie triple derivation; Local and 2-local; Von Neumann algebra; 16W25; 46L57; 47B49;
D O I
暂无
中图分类号
学科分类号
摘要
Let M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}$$\end{document} be a finite von Neumann algebra with no central summands of type I1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${I}_{1}$$\end{document}. Suppose that L:M→M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L: {\mathcal {M}}\rightarrow {\mathcal {M}}$$\end{document} is the second nonlinear mixed Lie triple derivation. Then L is an additive ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-derivation. We also show that each local and 2-local second Lie triple derivation on finite von Neumann algebras with no central summands of type I1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${I}_{1}$$\end{document} is a ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-derivation. Besides, each local and 2-local second Lie triple derivation on factor von Neumann algebras M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}$$\end{document} with dimM>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {M}}>1$$\end{document} is also a ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-derivation.
引用
收藏
页码:237 / 254
页数:17
相关论文
共 50 条
  • [21] Nonlinear Generalized Lie n-Derivations on von Neumann Algebras
    Feng, Xiaoxue
    Qi, Xiaofei
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2019, 45 (02) : 569 - 581
  • [22] Characterization of Lie derivations on von Neumann algebras
    Qi, Xiaofei
    Hou, Jinchuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (01) : 533 - 548
  • [23] Nonlinear Generalized Lie n-Derivations on von Neumann Algebras
    Xiaoxue Feng
    Xiaofei Qi
    Bulletin of the Iranian Mathematical Society, 2019, 45 : 569 - 581
  • [24] NONLINEAR MAPS PRESERVING MIXED LIE TRIPLE PRODUCTS ON FACTOR VON NEUMANN ALGEBRAS
    Yang, Zhujun
    Zhang, Jianhua
    ANNALS OF FUNCTIONAL ANALYSIS, 2019, 10 (03): : 325 - 336
  • [25] THE SECOND NONLINEAR MIXED JORDAN TRIPLE *-DERIVATIONS ON *-ALGEBRAS
    Zhao, Fangfang
    Zhang, Dongfang
    Chen, Quanyuan
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2024, 54 (03) : 919 - 927
  • [26] Nonlinear Bi-skew Lie Derivations on Factor von Neumann Algebras
    Kong, Liang
    Zhang, Jianhua
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2021, 47 (04) : 1097 - 1106
  • [27] NONLINEAR LIE-TYPE DERIVATIONS OF VON NEUMANN ALGEBRAS AND RELATED TOPICS
    Fosner, Ajda
    Wei, Feng
    Xiao, Zhankui
    COLLOQUIUM MATHEMATICUM, 2013, 132 (01) : 53 - 71
  • [28] Characterization of nonlinear Lie type derivations on von Neumann algebras by local action
    Li, Changjing
    Zhang, Jingyi
    Liang, Yueliang
    Chen, Lin
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (09) : 3694 - 3710
  • [29] Nonlinear Bi-skew Lie Derivations on Factor von Neumann Algebras
    Liang Kong
    Jianhua Zhang
    Bulletin of the Iranian Mathematical Society, 2021, 47 : 1097 - 1106
  • [30] Non-global Nonlinear Lie Triple Derivable Maps on Finite von Neumann Algebras
    Xingpeng Zhao
    Haixia Hao
    Bulletin of the Iranian Mathematical Society, 2021, 47 : 307 - 322