A Concentration Phenomenon for Semilinear Elliptic Equations

被引:1
|
作者
Nils Ackermann
Andrzej Szulkin
机构
[1] Universidad Nacional Autónoma de México,Instituto de Matemáticas
[2] Circuito Exterior,Department of Mathematics
[3] C.U.,undefined
[4] Stockholm University,undefined
关键词
Soliton; Nontrivial Solution; Dielectric Response; Kerr Nonlinearity; Ground State Solution;
D O I
暂无
中图分类号
学科分类号
摘要
For a domain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega \subset \mathbb{R}^{N}}$$\end{document} we consider the equation\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\Delta{u} + V(x)u = Q_n(x)|{u}|^{p-2}u$$\end{document}with zero Dirichlet boundary conditions and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${p\in(2, 2^*)}$$\end{document}. Here \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V \geqq 0}$$\end{document} and Qn are bounded functions that are positive in a region contained in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Omega}$$\end{document} and negative outside, and such that the sets {Qn > 0} shrink to a point \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x_0 \in \Omega}$$\end{document} as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${n \to \infty}$$\end{document}. We show that if un is a nontrivial solution corresponding to Qn, then the sequence (un) concentrates at x0 with respect to the H1 and certain Lq-norms. We also show that if the sets {Qn > 0} shrink to two points and un are ground state solutions, then they concentrate at one of these points.
引用
收藏
页码:1075 / 1089
页数:14
相关论文
共 50 条
  • [21] On the Cauchy problem for semilinear elliptic equations
    Nguyen Huy Tuan
    Tran Thanh Binh
    Viet, Tran Quoc
    Lesnic, Daniel
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2016, 24 (02): : 123 - 138
  • [22] Geometric approaches to semilinear elliptic equations
    Wei, Juncheng
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III, 2014, : 941 - 964
  • [23] Symmetrization for singular semilinear elliptic equations
    B. Brandolini
    F. Chiacchio
    C. Trombetti
    Annali di Matematica Pura ed Applicata, 2014, 193 : 389 - 404
  • [24] Symmetrization for singular semilinear elliptic equations
    Brandolini, B.
    Chiacchio, F.
    Trombetti, C.
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (02) : 389 - 404
  • [25] Semilinear elliptic equations with critical nonlinearities
    Tonkes, E
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2000, 62 (01) : 171 - 173
  • [26] Semilinear elliptic equations on rough domains
    Arendt, Wolfgang
    Daners, Daniel
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 346 : 376 - 415
  • [27] Solutions of Semilinear Elliptic Equations in Tubes
    Pacard, Frank
    Pacella, Filomena
    Sciunzi, Berardino
    JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (01) : 445 - 471
  • [28] Semilinear elliptic equations and nonlinearities with zeros
    Barrios, Begona
    Garcia-Melian, Jorge
    Iturriaga, Leonelo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 134 : 117 - 126
  • [29] Semilinear elliptic equations and fixed points
    Barroso, CS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (03) : 745 - 749
  • [30] ON SINGULAR SEMILINEAR ELLIPTIC-EQUATIONS
    SHAKER, AW
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 173 (01) : 222 - 228