Multi-session aware hypergraph neural network for session-based recommendation

被引:0
|
作者
Yunbo Rao
Tongze Mu
Shaoning Zeng
Junming Xue
Jinhua Liu
机构
[1] University of Electronic Science and Technology of China,School of Information and Software Engineering
[2] University of Electronic Science and Technology of China,Yangtze Delta Region Institute (Huzhou)
[3] Shangrao Normal University,School of Mathematics and Computer Science
来源
关键词
Multi-session aware; Soft attention; Hypergraph neural network; Session-based recommendation;
D O I
暂无
中图分类号
学科分类号
摘要
Session-based user behavior prediction is a difficulty in network behavior modeling due to the limitation of information. In recent years, the neural network has become a new research direction in recommendation system, however, the existing graph structure recommended method simple binary relation of concern within the session, but in real life tend to have the multiple complex relationships between items. In addition, hyperedges lack displayed position information in hypergraphs, and items in different orders may construct the same hyperedges, which necessarily limits the ability to obtain exact vector representations of sessions. Therefore, to solve the above limitations, a multi-session aware hypergraph neural network (MA-HGNN) for session-based recommendation is proposed, which takes advantage of hypergraphs to model complex multivariate relationships in sessions, and alleviates the hyperedge isomorphism problem by preserving sequence information. At the same time, the co-occurrence graph structure and the local session graph structure are established to realize the connection between the similar user intentions in different sessions and the potential behavior patterns in the same session. Finally, experiments are carried out on three real-world datasets Diginetica, Tmall and Nowplaying, and the models proposed in our work are significantly improved, which proves the effectiveness of the method.
引用
收藏
页码:12757 / 12774
页数:17
相关论文
共 50 条
  • [21] Enhancing Hypergraph Neural Networks with Intent Disentanglement for Session-based Recommendation
    Li, Yinfeng
    Gao, Chen
    Luo, Hengliang
    Jin, Depeng
    Li, Yong
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 1997 - 2002
  • [22] Intention-aware denoising graph neural network for session-based recommendation
    Shanshan Hua
    Mingxin Gan
    Applied Intelligence, 2023, 53 : 23097 - 23112
  • [23] Intention-aware denoising graph neural network for session-based recommendation
    Hua, Shanshan
    Gan, Mingxin
    APPLIED INTELLIGENCE, 2023, 53 (20) : 23097 - 23112
  • [24] RepeatNet: A Repeat Aware Neural Recommendation Machine for Session-Based Recommendation
    Ren, Pengjie
    Chen, Zhumin
    Li, Jing
    Ren, Zhaochun
    Ma, Jun
    de Rijke, Maarten
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 4806 - 4813
  • [25] Multi-Behavior Hypergraph Contrastive Learning for Session-Based Recommendation
    Guo, Liangmin
    Zhou, Shiming
    Tang, Haiyue
    Zheng, Xiaoyao
    Luo, Yonglong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (03) : 1325 - 1338
  • [26] Enhanced graph neural network for session-based recommendation
    Sheng, Zhenzhen
    Zhang, Tao
    Zhang, Yuejie
    Gao, Shang
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [27] Recurrent convolutional neural network for session-based recommendation
    Zhang, Jinjin
    Ma, Chenhui
    Mu, Xiaodong
    Zhao, Peng
    Zhong, Chengliang
    Ruhan, A.
    NEUROCOMPUTING, 2021, 437 : 157 - 167
  • [28] Modeling Price-Aware Session-Based Recommendation Based on Graph Neural Network
    Feng, Jian
    Wang, Yuwen
    Chen, Shaojian
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 76 (01): : 397 - 413
  • [29] A Spatiotemporal Graph Neural Network for session-based recommendation
    Wang, Huanwen
    Zeng, Yawen
    Chen, Jianguo
    Zhao, Zhouting
    Chen, Hao
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 202
  • [30] Neural Attentive Session-based Recommendation
    Li, Jing
    Ren, Pengjie
    Chen, Zhumin
    Ren, Zhaochun
    Lian, Tao
    Ma, Jun
    CIKM'17: PROCEEDINGS OF THE 2017 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2017, : 1419 - 1428