Diameter-sensitive biocompatibility of anodic TiO2 nanotubes treated with supercritical CO2 fluid

被引:0
|
作者
Ming-Ying Lan
Chia-Pei Liu
Her-Hsiung Huang
Jeng-Kuei Chang
Sheng-Wei Lee
机构
[1] Taipei Veterans General Hospital,Department of Otolaryngology
[2] National Yang-Ming University,Institute of Clinical Medicine
[3] National Central University,Institute of Materials Science and Engineering
[4] National Yang-Ming University,Department of Dentistry
关键词
Biocompatibility; TiO; nanotubes; Anodic oxidation; Supercritical CO; fluid; Human fibroblast cells; 68.47.Gh; 82.45.Yz; 82.50.Hp; 87.17.-d;
D O I
暂无
中图分类号
学科分类号
摘要
This work reports on the diameter-sensitive biocompatibility of anodic TiO2 nanotubes with different nanotube diameters grown by a self-ordering process and subsequently treated with supercritical CO2 (ScCO2) fluid. We find that highly hydrophilic as-grown TiO2 nanotubes become hydrophobic after the ScCO2 treatment but can effectively recover their surface wettability under UV light irradiation as a result of photo-oxidation of C-H functional groups formed on the nanotube surface. It is demonstrated that human fibroblast cells show more obvious diameter-specific behavior on the ScCO2-treated TiO2 nanotubes than on the as-grown ones in the range of diameters of 15 to 100 nm. This result can be attributed to the removal of disordered Ti(OH)4 precipitates from the nanotube surface by the ScCO2 fluid, thus resulting in purer nanotube topography and stronger diameter dependence of cell activity. Furthermore, for the smallest diameter of 15 nm, ScCO2-treated TiO2 nanotubes reveal higher biocompatibility than the as-grown sample.
引用
收藏
相关论文
共 50 条
  • [31] Small diameter TiO2 nanotubes with enhanced photoresponsivity
    Liu, Guohua
    Hoivik, Nils
    Wang, Kaiying
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 28 : 107 - 110
  • [32] Supercritical fluid extraction with CO2
    Hurren, D
    Berger, T
    FILTRATION + SEPARATION, 1999, 36 (03) : 25 - 27
  • [33] On the biocompatibility between TiO2 nanotubes layer and human osteoblasts
    Portan, Diana V.
    Kroustalli, Anthi A.
    Deligianni, Despina D.
    Papanicolaou, George C.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2012, 100A (10) : 2546 - 2553
  • [34] Reaction of silanes in supercritical CO2 with TiO2 and Al2O3
    Gu, Wei
    Tripp, Carl P.
    LANGMUIR, 2006, 22 (13) : 5748 - 5752
  • [35] Nonstoichiometry-Induced Enhancement of Electrochemical Capacitance in Anodic TiO2 Nanotubes with Controlled Pore Diameter
    Anitha, V. C.
    Banerjee, Arghya Narayan
    Dillip, G. R.
    Joo, Sang Woo
    Min, Bong Ki
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (18): : 9569 - 9580
  • [36] The Coil–Globule Transition in Microencapsulation of TiO2 Nanoparticles in a Supercritical CO2 Jet
    K. A. Tatarenko
    P. A. Tatarenko
    S. A. Chernyak
    A. V. Lazarev
    Russian Journal of Physical Chemistry B, 2018, 12 : 1249 - 1254
  • [37] Cathodic deposition of TiO2 thin films with supercritical CO2 emulsified electrolyte
    Chang, Tso-Fu Mark
    Lin, Wei-Hao
    Hsu, Yung-Jung
    Chen, Chun-Yi
    Sato, Tatsuo
    Sone, Masato
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 33 : 68 - 71
  • [38] PREPARATION OF MACROPOROUS TiO2 BY STARCH MICROSPHERES TEMPLATE WITH ASSISTANCE OF SUPERCRITICAL CO2
    Tang, Lin-Qi
    Ni, Wei
    Zhao, Hong-Ying
    Xu, Qun
    Jiao, Jian-Xia
    BIORESOURCES, 2009, 4 (01): : 38 - 48
  • [39] Scanning electron microscopy of heat treated TiO2 nanotubes arrays obtained by anodic oxidation
    Naranjo, D. I.
    Garcia-Vergara, S. J.
    Blanco, S.
    4TH INTERNATIONAL MEETING FOR RESEARCHERS IN MATERIALS AND PLASMA TECHNOLOGY (4TH IMRMPT), 2017, 935
  • [40] Anodic CaO-TiO2 Nanotubes Composite Film for Low Temperature CO2 Adsorption
    Lai, Chin Wei
    JOURNAL OF NANOMATERIALS, 2014, 2014