Anti de Sitter Quantum Field Theory and a New Class of Hypergeometric Identities

被引:0
|
作者
Jacques Bros
Henri Epstein
Michel Gaudin
Ugo Moschella
Vincent Pasquier
机构
[1] CEA,Institut de Physique Théorique
[2] Institut des Hautes Études Scientifiques,undefined
[3] Università dell’Insubria,undefined
[4] INFN,undefined
来源
关键词
Hypergeometric Function; Legendre Function; Sitter Universe; Fermi Golden Rule; Hypergeometric Identity;
D O I
暂无
中图分类号
学科分类号
摘要
We use Anti-de Sitter quantum field theory to prove a new class of identities between hypergeometric functions related to the Källén-Lehmann representation of products of two Anti-de Sitter two-point functions. A rich mathematical structure emerges. We apply our results to study the decay of unstable Anti-de Sitter particles. The total amplitude is in this case finite and Anti-de Sitter invariant.
引用
收藏
页码:255 / 291
页数:36
相关论文
共 50 条