Komlós properties in Banach lattices

被引:0
|
作者
E. Y. Emelyanov
N. Erkurşun-Özcan
S. G. Gorokhova
机构
[1] Middle East Technical University,Department of Mathematics
[2] Hacettepe University,Department of Mathematics
[3] Sobolev Institute of Mathematics,undefined
来源
Acta Mathematica Hungarica | 2018年 / 155卷
关键词
Banach lattice; −convergence; −convergence; -convergence; Komlós property; Komlós set; space of continuous functions; 46B42;
D O I
暂无
中图分类号
学科分类号
摘要
Several Komlós like properties in Banach lattices are investigated. We prove that C(K) fails the oo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${oo}$$\end{document}-pre-Komlós property, assuming that the compact Hausdorff space K has a nonempty separable open subset U without isolated points such that every u∈\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\in}$$\end{document}U has countable neighborhood base. We prove also that, for any infinite dimension al Banach lattice E, there is an unbounded convex uo-pre-Komlós set C⊆E+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\subseteq E_{+}}$$\end{document} which is not uo-Komlós.
引用
收藏
页码:324 / 331
页数:7
相关论文
共 50 条
  • [31] Banach spaces and Banach lattices of singular functions
    Bernal-Gonzalez, L.
    Fernandez-Sanchez, J.
    Martinez-Gomez, M. E.
    Seoane-Sepulveda, J. B.
    STUDIA MATHEMATICA, 2021, 260 (02) : 167 - 193
  • [32] Mean ergodicity on Banach lattices and Banach spaces
    Emel'yanov, EY
    Wolff, MPH
    ARCHIV DER MATHEMATIK, 1999, 72 (03) : 214 - 218
  • [33] On finite elements in vector lattices and Banach lattices
    Chen, ZL
    Weber, MR
    MATHEMATISCHE NACHRICHTEN, 2006, 279 (5-6) : 495 - 501
  • [34] How Tight Is the Bollobás-Komlós Conjecture?
    Sarmad Abbasi
    Graphs and Combinatorics, 2000, 16 (2) : 129 - 137
  • [36] Some Properties of Weak * Dunford-Pettis Operators on Banach Lattices
    Boumnidel, S.
    El Kaddouri, A.
    Aboutafail, O.
    Bouras, K.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42
  • [37] Duality properties for b-AM-compact operators on Banach lattices
    Cheng, Na
    Chen, Zi-Li
    Chen, Guang-Gui
    MATHEMATICAL NOTES, 2013, 93 (3-4) : 465 - 469
  • [38] Spectral properties of a class of positive semigroups on Banach lattices and streaming operators
    Mokhtar-Kharroubi, Mustapha
    POSITIVITY, 2006, 10 (02) : 231 - 249
  • [39] Spectral Properties of a Class of Positive Semigroups on Banach Lattices and Streaming Operators
    Mustapha Mokhtar-Kharroubi
    Positivity, 2006, 10 : 231 - 249
  • [40] Polynomial versions of weak Dunford-Pettis properties in Banach lattices
    Wang, Yu
    Shi, Zhongrui
    Bu, Qingying
    POSITIVITY, 2021, 25 (05) : 1685 - 1698