Collaborative Matrix Factorization with Soft Regularization for Drug-Target Interaction Prediction

被引:0
|
作者
Li-Gang Gao
Meng-Yun Yang
Jian-Xin Wang
机构
[1] Central South University,School of Computer Science and Engineering
[2] Central South University,Hunan Provincial Key Laboratory of Bioinformatics
[3] Shaoyang University,School of Science
来源
Journal of Computer Science and Technology | 2021年 / 36卷
关键词
drug-target interaction; collaborative matrix factorization; soft regularization; noisy data;
D O I
暂无
中图分类号
学科分类号
摘要
Identifying the potential drug-target interactions (DTI) is critical in drug discovery. The drug-target interaction prediction methods based on collaborative filtering have demonstrated attractive prediction performance. However, many corresponding models cannot accurately express the relationship between similarity features and DTI features. In order to rationally represent the correlation, we propose a novel matrix factorization method, so-called collaborative matrix factorization with soft regularization (SRCMF). SRCMF improves the prediction performance by combining the drug and the target similarity information with matrix factorization. In contrast to general collaborative matrix factorization, the fundamental idea of SRCMF is to make the similarity features and the potential features of DTI approximate, not identical. Specifically, SRCMF obtains low-rank feature representations of drug similarity and target similarity, and then uses a soft regularization term to constrain the approximation between drug (target) similarity features and drug (target) potential features of DTI. To comprehensively evaluate the prediction performance of SRCMF, we conduct cross-validation experiments under three different settings. In terms of the area under the precision-recall curve (AUPR), SRCMF achieves better prediction results than six state-of-the-art methods. Besides, under different noise levels of similarity data, the prediction performance of SRCMF is much better than that of collaborative matrix factorization. In conclusion, SRCMF is robust leading to performance improvement in drug-target interaction prediction.
引用
收藏
页码:310 / 322
页数:12
相关论文
共 50 条
  • [41] CoDe-DTI: Collaborative Deep Learning-based Drug-Target Interaction Prediction
    Yasuo, Nobuaki
    Nakashima, Yusuke
    Sekijima, Masakazu
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 792 - 797
  • [42] Associative learning mechanism for drug-target interaction prediction
    Zhu, Zhiqin
    Yao, Zheng
    Qi, Guanqiu
    Mazur, Neal
    Yang, Pan
    Cong, Baisen
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2023, 8 (04) : 1558 - 1577
  • [43] Drug-target interaction prediction: A Bayesian ranking approach
    Peska, Ladislav
    Buza, Krisztian
    Koller, Julia
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 152 : 15 - 21
  • [44] Survey on Computational Approaches for Drug-Target Interaction Prediction
    Zhang, Ran
    Wang, Xuezhi
    Wang, Jiajia
    Meng, Zhen
    Computer Engineering and Applications, 2023, 59 (12): : 1 - 13
  • [45] A Distributed and Privatized Framework for Drug-Target Interaction Prediction
    Lan, Chao
    Chandrasekaran, Sai Nivedita
    Huan, Jun
    2016 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2016, : 731 - 734
  • [46] Drug-Target Interaction Prediction Based on Heterogeneous Networks
    Wang, Yingjie
    Chang, Huiyou
    Wang, Jihong
    Shi, Yue
    2018 2ND INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND BIOINFORMATICS (ICBEB 2018), 2018, : 14 - 18
  • [47] Effective drug-target interaction prediction with mutual interaction neural network
    Li, Fei
    Zhang, Ziqiao
    Guan, Jihong
    Zhou, Shuigeng
    BIOINFORMATICS, 2022, 38 (14) : 3582 - 3589
  • [48] Prediction of drug-target interactions using popular Collaborative Filtering methods
    Koohi, Arezou
    2013 IEEE INTERNATIONAL WORKSHOP ON GENOMIC SIGNAL PROCESSING AND STATISTICS (GENSIPS 2013), 2013, : 58 - 61
  • [49] Drug-target interactions prediction via deep collaborative filtering with multiembeddings
    Chen, Ruolan
    Xia, Feng
    Hu, Bing
    Jin, Shuting
    Liu, Xiangrong
    BRIEFINGS IN BIOINFORMATICS, 2022, 23 (02)
  • [50] Drug-target interaction prediction with collaborative contrastive learning and adaptive self-paced sampling strategy
    Tian, Zhen
    Yu, Yue
    Ni, Fengming
    Zou, Quan
    BMC BIOLOGY, 2024, 22 (01)