Automated classification of Alzheimer's disease based on deep belief neural networks

被引:0
|
作者
K. Nanthini
A. Tamilarasi
D. Sivabalaselvamani
P. Suresh
机构
[1] Kongu Engineering College,Department of Computer Applications
[2] Vellore Institute of Technology,School of Computer Science and Engineering
来源
关键词
Alzheimer's disease; Two-tiered feature selection; Deep belief network; Classification;
D O I
暂无
中图分类号
学科分类号
摘要
When it comes to the causes of dementia, Alzheimer's disease is the most mysterious. There is no central genetic component connected to Alzheimer's disease. Previous approaches and tools for determining Alzheimer's disease genetic risk factors are unreliable. The brain images provided the bulk of the available information. In contrast, large-scale approaches in bioinformatics have seen significant development in recent years. It has encouraged efforts to identify the hereditary risk factors for developing Alzheimer's disease. A large amount of data on the brain's prefrontal cortex as a consequence of recent studies has allowed for the creation of classification and prediction models for Alzheimer's disease. Using the OASIS-4 dataset, which suffers from High Dimension Low Sample Size (HDLSS) problems, a Deep belief network with a Restricted Boltzmann Machine (RBM)-based classification model for processing multimodal data has been constructed. The multi-layer feature selection procedure that took into account both the technical and biological aspects of the characteristics to solve the HDLSS problem has been proposed. In molecular-level information, in the first stage of the two-tiered feature selection method, abnormal places in the dataset are found. Second, combining multiple different feature selection methods is used to refine the set of candidate genes. The principal component analysis is used for dimensionality reduction in MRI, and well pre-processed cognitive assessment scores like MMSE and ADA-cog are considered. Deep belief networks with multiple RBM are used to do unsupervised feature learning. Fivefold cross-validation has been used in all classification studies.
引用
收藏
页码:7405 / 7419
页数:14
相关论文
共 50 条
  • [21] Classification of Alzheimer's Disease from MRI Data Using an Ensemble of Hybrid Deep Convolutional Neural Networks
    Jabason, Emimal
    Ahmad, M. Omair
    Swamy, M. N. S.
    2019 IEEE 62ND INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS), 2019, : 481 - 484
  • [22] Classification of Bearing Data Based on Deep Belief Networks
    Zhang, Ran
    Wu, Lifeng
    Fu, Xiaohui
    Yao, Beibei
    2016 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHENGDU), 2016,
  • [23] CLASSIFICATION OF HYPERSPECTRAL IMAGE BASED ON DEEP BELIEF NETWORKS
    Li, Tong
    Zhang, Junping
    Zhang, Ye
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 5132 - 5136
  • [24] Person/Vehicle Classification based on Deep Belief Networks
    Sun, Ning
    Han, Guang
    Du, Kun
    Liu, Jixin
    Li, Xiaofei
    2014 10TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2014, : 113 - 117
  • [25] Transfer Learning-Based Ensemble of Deep Neural Architectures for Alzheimer's and Parkinson's Disease Classification
    Vimbi, Viswan
    Shaffi, Noushath
    Mahmud, Mufti
    Subramanian, Karthikeyan
    Hajamohideen, Faizal
    APPLIED INTELLIGENCE AND INFORMATICS, AII 2023, 2024, 2065 : 186 - 204
  • [26] Classification of Alzheimer’s Disease Using Deep Convolutional Spiking Neural Network
    Regina Esi Turkson
    Hong Qu
    Cobbinah Bernard Mawuli
    Moses J. Eghan
    Neural Processing Letters, 2021, 53 : 2649 - 2663
  • [27] An Efficient Deep Neural Network Binary Classifier for Alzheimer's Disease Classification
    Prajapati, Rukesh
    Khatri, Uttam
    Kwon, Goo Rak
    3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (IEEE ICAIIC 2021), 2021, : 231 - 234
  • [28] Classification of Alzheimer's Disease Using Deep Convolutional Spiking Neural Network
    Turkson, Regina Esi
    Qu, Hong
    Mawuli, Cobbinah Bernard
    Eghan, Moses J.
    NEURAL PROCESSING LETTERS, 2021, 53 (04) : 2649 - 2663
  • [29] Alzheimer disease classification using tawny flamingo based deep convolutional neural networks via federated learning
    Mandawkar, Umakant
    Diwan, Tausif
    IMAGING SCIENCE JOURNAL, 2022, 70 (07): : 459 - 472
  • [30] Alzheimer's disease classification using pre-trained deep networks
    Shanmugam, Jayanthi Venkatraman
    Duraisamy, Baskar
    Simon, Blessy Chittattukarakkaran
    Bhaskaran, Preethi
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71