On weakly Radon–Nikodým compact spaces

被引:0
|
作者
Gonzalo Martínez-Cervantes
机构
[1] Universidad de Murcia,Departamento de Matemáticas, Facultad de Matemáticas
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
A compact space is said to be weakly Radon–Nikodým if it is homeomorphic to a weak*-compact subset of the dual of a Banach space not containing an isomorphic copy of ℓ1. In this paper we provide an example of a continuous image of a Radon–Nikodým compact space which is not weakly Radon–Nikodým. Moreover, we define a superclass of the continuous images of weakly Radon–Nikodým compact spaces and study its relation with Corson compacta and weakly Radon–Nikodým compacta.
引用
收藏
页码:165 / 177
页数:12
相关论文
共 50 条
  • [21] COUNTABLY COMPACT WEAKLY WHYBURN SPACES
    Spadaro, S.
    ACTA MATHEMATICA HUNGARICA, 2016, 149 (01) : 254 - 262
  • [22] WEAKLY COMPACT SETS IN ORLICZ SPACES
    ANDO, T
    CANADIAN JOURNAL OF MATHEMATICS, 1962, 14 (01): : 170 - &
  • [23] About weakly locally compact spaces
    Breuckmann, TK
    Kudri, SRT
    Aygün, H
    SOFT METHODOLOGY AND RANDOM INFORMATION SYSTEMS, 2004, : 638 - 644
  • [24] ON WEAKLY COMPACT SUBSETS OF BANACH SPACES
    CORSON, HH
    LINDENST.J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 17 (02) : 407 - &
  • [25] Weakly compact approximation in Banach spaces
    Odell, E
    Tylli, HO
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (03) : 1125 - 1159
  • [26] WEAKLY mu-COMPACT SPACES
    Sarsak, Mohammad S.
    DEMONSTRATIO MATHEMATICA, 2012, 45 (04) : 929 - 938
  • [27] Countably compact weakly Whyburn spaces
    S. Spadaro
    Acta Mathematica Hungarica, 2016, 149 : 254 - 262
  • [28] Weak M weakly compact and weak L weakly compact operators
    Oughajji, Fatima Zahra
    Moussa, Mohammed
    AFRIKA MATEMATIKA, 2022, 33 (02)
  • [29] Weak M weakly compact and weak L weakly compact operators
    Oughajji F.Z.
    Moussa M.
    Afrika Matematika, 2022, 33 (2)
  • [30] On generalizations of Radon-Nikodym compact spaces
    Namioka, I
    TOPOLOGY PROCEEDINGS, VOL 26, NO 2, 2001-2002, 2002, 26 (02): : 741 - 750