Synchronization and random long time dynamics for mean-field plane rotators

被引:0
|
作者
Lorenzo Bertini
Giambattista Giacomin
Christophe Poquet
机构
[1] Università di Roma La Sapienza,Dipartimento di Matematica
[2] Université Paris Diderot,U.F.R. Mathématiques and Laboratoire de Probabilités et Modèles Aléatoires
来源
关键词
Coupled rotators; Fokker–Planck PDE; Kuramoto synchronization model; Finite size corrections to scaling limits ; Long time dynamics; Diffusion on stable invariant manifold; 60K35; 37N25; 82C26; 82C31; 92B20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the natural Langevin dynamics which is reversible with respect to the mean-field plane rotator (or classical spin XY) measure. It is well known that this model exhibits a phase transition at a critical value of the interaction strength parameter K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}, in the limit of the number N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} of rotators going to infinity. A Fokker–Planck PDE captures the evolution of the empirical measure of the system as N→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \rightarrow \infty $$\end{document}, at least for finite times and when the empirical measure of the system at time zero satisfies a law of large numbers. The phase transition is reflected in the fact that the PDE for K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} above the critical value has several stationary solutions, notably a stable manifold—in fact, a circle—of stationary solutions that are equivalent up to rotations. These stationary solutions are actually unimodal densities parametrized by the position of their maximum (the synchronization phase or center). We characterize the dynamics on times of order N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} and we show substantial deviations from the behavior of the solutions of the PDE. In fact, if the empirical measure at time zero converges as N→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \rightarrow \infty $$\end{document} to a probability measure (which is away from a thin set that we characterize) and if time is speeded up by N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}, the empirical measure reaches almost instantaneously a small neighborhood of the stable manifold, to which it then sticks and on which a non-trivial random dynamics takes place. In fact the synchronization center performs a Brownian motion with a diffusion coefficient that we compute. Our approach therefore provides, for one of the basic statistical mechanics systems with continuum symmetry, a detailed characterization of the macroscopic deviations from the large scale limit—or law of large numbers—due to finite size effects. But the interest for this model goes beyond statistical mechanics, since it plays a central role in a variety of scientific domains in which one aims at understanding synchronization phenomena.
引用
收藏
页码:593 / 653
页数:60
相关论文
共 50 条
  • [41] Mean-field games with logistic population dynamics
    Gomes, Diogo Aguiar
    Ribeiro, Ricardo de Lima
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 2513 - 2518
  • [42] ERGODICITY OF THE UNDERDAMPED MEAN-FIELD LANGEVIN DYNAMICS
    Kazeykina, Anna
    Ren, Zhenjie
    Tan, Xiaolu
    Yang, Junjian
    ANNALS OF APPLIED PROBABILITY, 2024, 34 (03): : 3181 - 3226
  • [43] Saddles and dynamics in a solvable mean-field model
    Angelani, L
    Ruocco, G
    Zamponi, F
    JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (18): : 8301 - 8306
  • [44] Opinion dynamics, stubbornness and mean-field games
    Bauso, Dario
    Pesenti, Raffaele
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 3475 - 3480
  • [45] Mean-Field Dynamics for the Nelson Model with Fermions
    Leopold, Nikolai
    Petrat, Soeren
    ANNALES HENRI POINCARE, 2019, 20 (10): : 3471 - 3508
  • [46] Mean-field diffusive dynamics on weighted networks
    Baronchelli, Andrea
    Pastor-Satorras, Romualdo
    PHYSICAL REVIEW E, 2010, 82 (01)
  • [47] Dynamical mean-field theory and aging dynamics
    Altieri, Ada
    Biroli, Giulio
    Cammarota, Chiara
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (37)
  • [48] Stochastic Mean-Field Approach to Fluid Dynamics
    Simon Hochgerner
    Journal of Nonlinear Science, 2018, 28 : 725 - 737
  • [49] Stochastic Mean-Field Approach to Fluid Dynamics
    Hochgerner, Simon
    JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (02) : 725 - 737
  • [50] Glassy mean-field dynamics of the backgammon model
    Franz, S
    Ritort, F
    JOURNAL OF STATISTICAL PHYSICS, 1996, 85 (1-2) : 131 - 150