Synchronization and random long time dynamics for mean-field plane rotators

被引:0
|
作者
Lorenzo Bertini
Giambattista Giacomin
Christophe Poquet
机构
[1] Università di Roma La Sapienza,Dipartimento di Matematica
[2] Université Paris Diderot,U.F.R. Mathématiques and Laboratoire de Probabilités et Modèles Aléatoires
来源
关键词
Coupled rotators; Fokker–Planck PDE; Kuramoto synchronization model; Finite size corrections to scaling limits ; Long time dynamics; Diffusion on stable invariant manifold; 60K35; 37N25; 82C26; 82C31; 92B20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the natural Langevin dynamics which is reversible with respect to the mean-field plane rotator (or classical spin XY) measure. It is well known that this model exhibits a phase transition at a critical value of the interaction strength parameter K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document}, in the limit of the number N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} of rotators going to infinity. A Fokker–Planck PDE captures the evolution of the empirical measure of the system as N→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \rightarrow \infty $$\end{document}, at least for finite times and when the empirical measure of the system at time zero satisfies a law of large numbers. The phase transition is reflected in the fact that the PDE for K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K$$\end{document} above the critical value has several stationary solutions, notably a stable manifold—in fact, a circle—of stationary solutions that are equivalent up to rotations. These stationary solutions are actually unimodal densities parametrized by the position of their maximum (the synchronization phase or center). We characterize the dynamics on times of order N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} and we show substantial deviations from the behavior of the solutions of the PDE. In fact, if the empirical measure at time zero converges as N→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N \rightarrow \infty $$\end{document} to a probability measure (which is away from a thin set that we characterize) and if time is speeded up by N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document}, the empirical measure reaches almost instantaneously a small neighborhood of the stable manifold, to which it then sticks and on which a non-trivial random dynamics takes place. In fact the synchronization center performs a Brownian motion with a diffusion coefficient that we compute. Our approach therefore provides, for one of the basic statistical mechanics systems with continuum symmetry, a detailed characterization of the macroscopic deviations from the large scale limit—or law of large numbers—due to finite size effects. But the interest for this model goes beyond statistical mechanics, since it plays a central role in a variety of scientific domains in which one aims at understanding synchronization phenomena.
引用
收藏
页码:593 / 653
页数:60
相关论文
共 50 条
  • [1] Synchronization and random long time dynamics for mean-field plane rotators
    Bertini, Lorenzo
    Giacomin, Giambattista
    Poquet, Christophe
    PROBABILITY THEORY AND RELATED FIELDS, 2014, 160 (3-4) : 593 - 653
  • [2] Synchronization for discrete mean-field rotators
    Jahnel, Benedikt
    Kuelske, Christof
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19 : 1 - 26
  • [3] Rotators with long-range interactions: Connection with the mean-field approximation
    Tamarit, F
    Anteneodo, C
    PHYSICAL REVIEW LETTERS, 2000, 84 (02) : 208 - 211
  • [4] Mean-field theory and synchronization in random recurrent neural networks
    Dauce, E
    Moynot, O
    Pinaud, O
    Samuelides, M
    NEURAL PROCESSING LETTERS, 2001, 14 (02) : 115 - 126
  • [5] Mean-field Theory and Synchronization in Random Recurrent Neural Networks
    Emmanuel Dauce
    Olivier Moynot
    Olivier Pinaud
    Manuel Samuelides
    Neural Processing Letters, 2001, 14 : 115 - 126
  • [6] Mean-field dynamics of a random neural network with noise
    Klinshov, Vladimir
    Franovic, Igor
    PHYSICAL REVIEW E, 2015, 92 (06)
  • [7] Synchronization and Spin-Flop Transitions for a Mean-Field XY Model in Random Field
    Collet, Francesca
    Ruszel, Wioletta
    JOURNAL OF STATISTICAL PHYSICS, 2016, 164 (03) : 645 - 666
  • [8] Synchronization and Spin-Flop Transitions for a Mean-Field XY Model in Random Field
    Francesca Collet
    Wioletta Ruszel
    Journal of Statistical Physics, 2016, 164 : 645 - 666
  • [9] Mean-field population dynamics of spiking neurons with random synaptic delays
    Mattia, M
    Del Giudice, P
    ARTIFICIAL NEURAL NETWORKS - ICANN 2002, 2002, 2415 : 111 - 116
  • [10] MEAN-FIELD THEORIES OF RANDOM ADVECTION
    KERSTEIN, AR
    MCMURTRY, PA
    PHYSICAL REVIEW E, 1994, 49 (01) : 474 - 482