Counting Cycles on Planar Graphs in Subexponential Time

被引:0
|
作者
Jin-Yi Cai
Ashwin Maran
机构
[1] University of Wisconsin–Madison,Computer Sciences Department
来源
Algorithmica | 2024年 / 86卷
关键词
Counting cycles; Planar graphs; Planar separator; Motzkin paths;
D O I
暂无
中图分类号
学科分类号
摘要
We study the problem of counting all cycles or self- avoiding walks (SAWs) on triangulated planar graphs. We present a subexponential 2O(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^{O(\sqrt{n})}$$\end{document} time algorithm for this counting problem. Among the technical ingredients used in this algorithm are the planar separator theorem and a delicate analysis using pairs of Motzkin paths and Motzkin numbers. We can then adapt this algorithm to uniformly sample SAWs, in subexponential time. Our work is motivated by the problem of gerrymandered districting maps.
引用
收藏
页码:656 / 693
页数:37
相关论文
共 50 条
  • [21] Approximately covering by cycles in planar graphs
    Rautenbach, D
    Reed, B
    PROCEEDINGS OF THE TWELFTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2001, : 402 - 406
  • [22] PLANAR NEIGHBORHOOD GRAPHS WITHOUT CYCLES
    SENDOV, B
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1991, 44 (04): : 23 - 25
  • [23] A note on Hamiltonian cycles in planar graphs
    Kreh, Martin
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (01)
  • [24] On the number of simple cycles in planar graphs
    Alt, H
    Fuchs, U
    Kriegel, K
    COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (05): : 397 - 405
  • [25] Counting and packing Hamilton cycles in dense graphs and oriented graphs
    Ferber, Asaf
    Krivelevich, Michael
    Sudakov, Benny
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 122 : 196 - 220
  • [26] PLANAR PACKING OF CYCLES AND UNICYCLIC GRAPHS
    Goerlich, Agnieszka
    DEMONSTRATIO MATHEMATICA, 2009, 42 (04) : 673 - 679
  • [27] On certain Hamiltonian cycles in planar graphs
    Böhme, T
    Harant, J
    Tkác, M
    JOURNAL OF GRAPH THEORY, 1999, 32 (01) : 81 - 96
  • [28] EVEN INDUCED CYCLES IN PLANAR GRAPHS
    PORTO, O
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 583 : 417 - 429
  • [29] Counting Minimum (s, t)-Cuts in Weighted Planar Graphs in Polynomial Time
    Bezakova, Ivona
    Friedlander, Adam J.
    MATHEMATICAL FOUNDATIONS OF COMPUTER SCIENCE 2010, 2010, 6281 : 126 - +
  • [30] Counting odd cycles in locally dense graphs
    Reiher, Christian
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2014, 105 : 1 - 5