SPPC: a new tree structure for mining erasable patterns in data streams

被引:0
|
作者
Tuong Le
Bay Vo
Philippe Fournier-Viger
Mi Young Lee
Sung Wook Baik
机构
[1] Sejong University,Digital Contents Research Institute
[2] Ton Duc Thang University,Division of Data Science
[3] Ton Duc Thang University,Faculty of Information Technology
[4] Harbin Institute of Technology (Shenzhen),School of Natural Sciences and Humanities
来源
Applied Intelligence | 2019年 / 49卷
关键词
Data mining; Data streams; Erasable patterns; Sliding window;
D O I
暂无
中图分类号
学科分类号
摘要
Discovering Erasable Patterns (EPs) consists of identifying product parts that will produce a small profit loss if their production is stopped. It is a data mining problem that has attracted the attention of numerous researchers in recent years due to the possibility of using EPs to reduce profit loss of manufacturers. Though, many algorithms have been designed to mine EPs, an important limitation of state-of-the-art EP mining algorithms is that they are batch algorithms, that is, they are designed to be applied on static databases. But in real-life applications, databases are dynamic, as they are constantly updated by adding or removing products and parts. To be informed about EPs in real-time, traditional EP mining algorithms must be applied over and over again on a database. This is inefficient as those algorithms are always applied from scratch without taking advantage of results generated by previous executions. Considering this important drawback of previous work for handling real-life dynamic data, this paper proposes an efficient algorithm named MSPPC for mining EPs in data streams. It relies on a novel tree structure named SPPC (Streaming Pre-Post Code) tree, which extends the WPPC tree structure for maintaining a compact tree representation of EPs in a data stream. Experimental results show that the designed MSPPC algorithm outperforms the state-of-the-art batch MERIT and dMERIT algorithms when they are run in batch mode using a sliding-window. Besides, the proposed algorithm is also faster than the state-of-the-art algorithms for mining EPs, namely MERIT, dMERIT + , MEI and EIFDD.
引用
收藏
页码:478 / 495
页数:17
相关论文
共 50 条
  • [41] A new algorithm for mining frequent patterns in Can Tree
    Hoseini, Masome Sadat
    Shahraki, Mohammad Nadimi
    Neysiani, Behzad Soleimani
    2015 2ND INTERNATIONAL CONFERENCE ON KNOWLEDGE-BASED ENGINEERING AND INNOVATION (KBEI), 2015, : 843 - 846
  • [42] Adaptive load shedding for mining frequent patterns from data streams
    Dang, Xuan Hong
    Ng, Wee-Keong
    Ong, Kok-Leong
    DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2006, 4081 : 342 - 351
  • [43] Mining frequent patterns in an arbitrary sliding window over data streams
    Li, Guohui
    Chen, Hui
    Yang, Bing
    Chen, Gang
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, 2008, 4947 : 496 - 503
  • [44] Bloom Filter Based Frequent Patterns Mining over Data Streams
    Tan JunShan
    Kuang Zhufang
    Yang Guogui
    INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2012), 2013, 8768
  • [46] Efficient approximate mining of frequent patterns over transactional data streams
    Ng, Willie
    Dash, Manoranjan
    DATA WAREHOUSING AND KNOWLEDGE DISCOVERY, PROCEEDINGS, 2008, 5182 : 241 - 250
  • [47] An Efficient Approach for Mining Frequent Patterns over Uncertain Data Streams
    Shajib, Md. Badi-Uz-Zaman
    Samiullah, Md.
    Ahmed, Chowdhury Farhan
    Leung, Carson K.
    Pazdor, Adam G. M.
    2016 IEEE 28TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2016), 2016, : 980 - 984
  • [48] Mining and Linking Patterns across Live Data Streams and Stream Archives
    Yang, Di
    Zhao, Kaiyu
    Hasan, Maryam
    Lu, Hanyuan
    Rundensteiner, Elke
    Ward, Matthew
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2013, 6 (12): : 1346 - 1349
  • [49] An Effective Method for Mining Negative Sequential Patterns From Data Streams
    Zhang, Nannan
    Ren, Xiaoqiang
    Dong, Xiangjun
    IEEE ACCESS, 2023, 11 : 31842 - 31854
  • [50] Mining Frequent Patterns in the Recent Time Window over Data Streams
    Chen, Hui
    HPCC 2008: 10TH IEEE INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING AND COMMUNICATIONS, PROCEEDINGS, 2008, : 586 - 593