A Criterion for Annihilating Ideals of Linear Recurring Sequences over Galois Rings

被引:0
|
作者
Peizhong Lu
机构
[1] Department of Computer Sciences,
[2] Fudan University,undefined
[3] Shanghai 200433,undefined
[4] China (e-mail: ppzlu@online.sh.cn),undefined
关键词
Keywords: Linear recurring sequences, Annihilating ideals, Nechaev's open problem, Cyclic modules, Gröbner bases.;
D O I
暂无
中图分类号
学科分类号
摘要
Let R be a local Artin principal ideal ring, R[x] the polynomial ring over R with indeterminate x. Let π be an element of R such that <π> is the unique maximal ideal of R. Let I be a zero-dimensional ideal of R[x], and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} the radical ideal of I. In this paper we show that I is the annihilating ideal of a linear recurring sequence over R if and only if I satisfies the following formula\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}
引用
收藏
页码:141 / 156
页数:15
相关论文
共 50 条