Existence of solution for a class of elliptic problems in exterior domain with discontinuous nonlinearity

被引:0
|
作者
Alves, Claudianor O. [1 ]
Mukherjee, Tuhina [2 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Matemat, BR-58429970 Campina Grande, PB, Brazil
[2] Natl Inst Technol Warangal, Dept Math, Hanamkonda 506004, Telangana, India
来源
关键词
Nonlinear elliptic equations; Variational methods; Nonsmooth analysis; MULTIPLE SOLUTIONS; EIGENVALUE PROBLEMS; POSITIVE SOLUTIONS; DIFFERENTIAL-EQUATIONS; THEOREMS;
D O I
10.1007/s42985-020-00065-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence of nontrivial solution for a class of elliptic problems of the form -Delta u + u = f(p,delta)(u(x)) a.e in Omega where Omega subset of R-N is an exterior domain for N > 2 and f(p,delta) : R -> R is an odd discontinuous function given by f(p),delta(t) = {t|t|(p-2), t is an element of[0,a], (1+delta)t|t|(p-2), t > a, with a > 0, delta > 0 and p is an element of(2, 2*;). For small enough delta and a, seeking help of the dual functional corresponding to the problem, we prove existence of at least one positive solution when R-N\Omega subset of B-sigma(0) for sufficiently small sigma.
引用
收藏
页数:32
相关论文
共 50 条
  • [31] An Existence Result for a Class of Magnetic Problems in Exterior Domains
    Claudianor O. Alves
    Vincenzo Ambrosio
    César E. Torres Ledesma
    Milan Journal of Mathematics, 2021, 89 : 523 - 550
  • [32] An Existence Result for a Class of Magnetic Problems in Exterior Domains
    Alves, Claudianor O.
    Ambrosio, Vincenzo
    Ledesma, Cesar E. Torres
    MILAN JOURNAL OF MATHEMATICS, 2021, 89 (02) : 523 - 550
  • [33] Existence of solution for Schrodinger equation with discontinuous nonlinearity and asymptotically linear
    Alves, Claudianor O.
    Patricio, Geovany F.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (02)
  • [34] Global branching for discontinuous problems in the exterior domain of a ball.
    Arcoya, D
    Zertiti, A
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1996, 10A (03): : 641 - 652
  • [35] Existence Results for a Class of the Quasilinear Elliptic Equations with the Logarithmic Nonlinearity
    Cui, Zhoujin
    Mao, Zisen
    Zong, Wen
    Zhang, Xiaorong
    Yang, Zuodong
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [36] Existence and uniqueness results for a class of elliptic equations with exponential nonlinearity
    Choe, K
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2005, 135 : 959 - 983
  • [37] ON AN ELLIPTIC OPERATOR WITH DISCONTINUOUS NONLINEARITY
    FRANK, LS
    WENDT, WD
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 54 (01) : 1 - 18
  • [38] On existence and concentration of solutions for an elliptic problem with discontinuous nonlinearity via penalization method
    Claudianor O. Alves
    Giovany M. Figueiredo
    Rúbia G. Nascimento
    Zeitschrift für angewandte Mathematik und Physik, 2014, 65 : 19 - 40
  • [39] Existence of solutions to a nonvariational elliptic boundary value problem with parameter and discontinuous nonlinearity
    Pavlenko V.N.
    Potapov D.K.
    Siberian Advances in Mathematics, 2017, 27 (1) : 16 - 25
  • [40] On existence and concentration of solutions for an elliptic problem with discontinuous nonlinearity via penalization method
    Alves, Claudianor O.
    Figueiredo, Giovany M.
    Nascimento, Rubia G.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (01): : 19 - 40