Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification

被引:0
|
作者
Julie Chang
Vincent Sitzmann
Xiong Dun
Wolfgang Heidrich
Gordon Wetzstein
机构
[1] Stanford University,Bioengineering Department
[2] Stanford University,Electrical Engineering Department
[3] King Abdullah University of Science and Technology,Visual Computing Center
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Convolutional neural networks (CNNs) excel in a wide variety of computer vision applications, but their high performance also comes at a high computational cost. Despite efforts to increase efficiency both algorithmically and with specialized hardware, it remains difficult to deploy CNNs in embedded systems due to tight power budgets. Here we explore a complementary strategy that incorporates a layer of optical computing prior to electronic computing, improving performance on image classification tasks while adding minimal electronic computational cost or processing time. We propose a design for an optical convolutional layer based on an optimized diffractive optical element and test our design in two simulations: a learned optical correlator and an optoelectronic two-layer CNN. We demonstrate in simulation and with an optical prototype that the classification accuracies of our optical systems rival those of the analogous electronic implementations, while providing substantial savings on computational cost.
引用
收藏
相关论文
共 50 条
  • [31] Improved Convolutional Neural Networks for Hyperspectral Image Classification
    Kalita, Shashanka
    Biswas, Mantosh
    RECENT DEVELOPMENTS IN MACHINE LEARNING AND DATA ANALYTICS, 2019, 740 : 397 - 410
  • [32] Bag of Tricks for Image Classification with Convolutional Neural Networks
    He, Tong
    Zhang, Zhi
    Zhang, Hang
    Zhang, Zhongyue
    Xie, Junyuan
    Li, Mu
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 558 - 567
  • [33] Mirror invariant convolutional neural networks for image classification
    Lu, Shufang
    Li, Yan
    Wang, Minqian
    Gao, Fei
    IET IMAGE PROCESSING, 2022, 16 (06) : 1626 - 1635
  • [34] Analysis of Convolutional Neural Networks for Document Image Classification
    Tensmeyer, Chris
    Martinez, Tony
    2017 14TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), VOL 1, 2017, : 388 - 393
  • [35] Hyperspectral Image Classification using Convolutional Neural Networks
    Shambulinga, M.
    Sadashivappa, G.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (06) : 702 - 708
  • [36] Deformable Convolutional Neural Networks for Hyperspectral Image Classification
    Zhu, Jian
    Fang, Leyuan
    Ghamisi, Pedram
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (08) : 1254 - 1258
  • [37] Hierarchical convolutional neural networks for fashion image classification
    Seo, Yian
    Shin, Kyung-shik
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 116 : 328 - 339
  • [38] Histopathological Image Classification with Deep Convolutional Neural Networks
    Alom, Md Zahangir
    Aspiras, Theus
    Taha, Tarek M.
    Asari, Vijayan K.
    APPLICATIONS OF MACHINE LEARNING, 2019, 11139
  • [39] Whole Mammogram Image Classification With Convolutional Neural Networks
    Zhang, Xiaofei
    Zhang, Yi
    Han, Erik Y.
    Jacobs, Nathan
    Han, Qiong
    Wang, Xiaoqin
    Liu, Jinze
    2017 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2017, : 700 - 704
  • [40] Histopathological Image Classification With Bilinear Convolutional Neural Networks
    Wang, Chaofeng
    Shi, Jun
    Zhang, Qi
    Ying, Shihui
    2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 4050 - 4053