An Intrinsic Order-Theoretic Characterization of the Weak Expectation Property

被引:0
|
作者
Martino Lupini
机构
[1] California Institute of Technology,Mathematics Department
[2] Victoria University of Wellington,School of Mathematics and Statistics
来源
关键词
Operator system; Function system; Weak expectation property; Riesz separation property; Positively existentially closed; Matrix sublinear functional; Primary 47L25, 46L89; Secondary 46A55, 52A07;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the following characterization of the weak expectation property for operator systems in terms of an approximate version of Wittstock’s matricial Riesz separation property: an operator system S satisfies the weak expectation property if and only if MqS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_{q}\left( S\right) $$\end{document} satisfies the approximate matricial Riesz separation property for every q∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q\in \mathbb {N}$$\end{document}. This can be seen as the noncommutative analog of the characterization of simplex spaces among function systems in terms of the classical Riesz separation property.
引用
收藏
相关论文
共 50 条