A Modification of Newton's Method for Analytic Mappings Having Multiple Zeros

被引:0
|
作者
P. Kravanja
A. Haegemans
机构
[1] Department of Computer Science,
[2] Katholieke Universiteit Leuven,undefined
[3] Celestijnenlaan 200 A,undefined
[4] B-3001 Heverlee,undefined
[5] Belgium,undefined
[6] e-mail: Peter.Kravanja@na-net.ornl.gov,undefined
[7] Ann.Haegemans@cs.kuleuven.ac.be ,undefined
来源
Computing | 1999年 / 62卷
关键词
AMS Subject Classifications:65H10.; Key words.Newton's method, analytic mappings, multiple zeros, Van de Vel's iteration.;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a modification of Newton's method for computing multiple roots of systems of analytic equations. Under mild assumptions the iteration converges quadratically. It involves certain constants whose product is a lower bound for the multiplicity of the root. As these constants are usually not known in advance, we devise an iteration in which not only an approximation for the root is refined, but also approximations for these constants. Numerical examples illustrate the effectiveness of our approach.
引用
收藏
页码:129 / 145
页数:16
相关论文
共 50 条
  • [41] The index of singular zeros of harmonic mappings of anti-analytic degree one
    Luce, Robert
    Sete, Olivier
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (01) : 1 - 21
  • [42] A normality criterion for meromorphic functions having multiple zeros
    Zeng, Shanpeng
    Lahiri, Indrajit
    ANNALES POLONICI MATHEMATICI, 2014, 110 (03) : 283 - 294
  • [43] Method for finding clusters of zeros of analytic function
    Sakurai, T.
    Torii, T.
    Ohsako, N.
    Sugiura, H.
    Zeitschrift fuer Angewandte Mathematik und Mechanik, ZAMM, Applied Mathematics and Mechanics, 76 (Suppl 1):
  • [44] A NUMERICAL METHOD FOR LOCATING ZEROS OF AN ANALYTIC FUNCTION
    DELVES, LM
    LYNESS, JN
    MATHEMATICS OF COMPUTATION, 1967, 21 (100) : 543 - &
  • [45] A method for finding clusters of zeros of analytic function
    Sakurai, T
    Torii, T
    Ohsako, N
    Sugiura, H
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1996, 76 : 515 - 516
  • [46] AN ITERATIVE METHOD FOR ZEROS OF ACCRETIVE MAPPINGS IN BANACH SPACES
    Nguyen Duong Nguyen
    Nguyen Buong
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2016,
  • [47] On the local convergence of Newton's method to a multiple root
    Yamagishi, Y
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2003, 55 (04) : 897 - 908
  • [48] The Julia set of Newton's method for multiple root
    Wang, XY
    Liu, W
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (01) : 101 - 110
  • [49] A CLASS OF REAL COCYCLES HAVING AN ANALYTIC COBOUNDARY MODIFICATION
    Kwiatkowski, J.
    Lemanczyk, M.
    Rudolph, D.
    ISRAEL JOURNAL OF MATHEMATICS, 1994, 87 (1-3) : 337 - 360
  • [50] A New Optimal Family of Schroder's Method for Multiple Zeros
    Behl, Ramandeep
    Alsolami, Arwa Jeza
    Pansera, Bruno Antonio
    Al-Hamdan, Waleed M.
    Salimi, Mehdi
    Ferrara, Massimiliano
    MATHEMATICS, 2019, 7 (11)