A Modification of Newton's Method for Analytic Mappings Having Multiple Zeros

被引:0
|
作者
P. Kravanja
A. Haegemans
机构
[1] Department of Computer Science,
[2] Katholieke Universiteit Leuven,undefined
[3] Celestijnenlaan 200 A,undefined
[4] B-3001 Heverlee,undefined
[5] Belgium,undefined
[6] e-mail: Peter.Kravanja@na-net.ornl.gov,undefined
[7] Ann.Haegemans@cs.kuleuven.ac.be ,undefined
来源
Computing | 1999年 / 62卷
关键词
AMS Subject Classifications:65H10.; Key words.Newton's method, analytic mappings, multiple zeros, Van de Vel's iteration.;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a modification of Newton's method for computing multiple roots of systems of analytic equations. Under mild assumptions the iteration converges quadratically. It involves certain constants whose product is a lower bound for the multiplicity of the root. As these constants are usually not known in advance, we devise an iteration in which not only an approximation for the root is refined, but also approximations for these constants. Numerical examples illustrate the effectiveness of our approach.
引用
收藏
页码:129 / 145
页数:16
相关论文
共 50 条
  • [1] A modification of Newton's method for analytic mappings having multiple zeros
    Kravanja, P
    Haegemans, A
    COMPUTING, 1999, 62 (02) : 129 - 145
  • [2] Modification of Newton's method for analytic mappings having multiple zeros
    Kravanja, P.
    Haegemans, A.
    Computing (Vienna/New York), 1999, 62 (02): : 129 - 145
  • [3] Two-step Newton's method for deflation-one singular zeros of analytic systems
    Lee, Kisun
    Li, Nan
    Zhi, Lihong
    JOURNAL OF SYMBOLIC COMPUTATION, 2024, 123
  • [4] A third-order modification of Newton's method for multiple roots
    Chun, Changbum
    Neta, Beny
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 211 (02) : 474 - 479
  • [5] Computing multiple zeros by using a parameter in Newton–Secant method
    Ferrara M.
    Sharifi S.
    Salimi M.
    SeMA Journal, 2017, 74 (4) : 361 - 369
  • [6] A MODIFICATION OF THE CLASSICAL QUADRATURE METHOD FOR LOCATING ZEROS OF ANALYTIC-FUNCTIONS
    IOAKIMIDIS, NI
    BIT, 1985, 25 (04): : 681 - 686
  • [7] Computing zeros of analytic mappings: A logarithmic residue approach
    Kravanja, P
    Cools, R
    Haegemans, A
    BIT, 1998, 38 (03): : 583 - 596
  • [8] Computing zeros of analytic mappings: A logarithmic residue approach
    P. Kravanja
    R. Cools
    A. Haegemans
    BIT Numerical Mathematics, 1998, 38 : 583 - 596
  • [9] Improved two-step Newton's method for computing simple multiple zeros of polynomial systems
    Li, Nan
    Zhi, Lihong
    NUMERICAL ALGORITHMS, 2022, 91 (01) : 19 - 50
  • [10] Improved two-step Newton’s method for computing simple multiple zeros of polynomial systems
    Nan Li
    Lihong Zhi
    Numerical Algorithms, 2022, 91 : 19 - 50