The Sugeno fuzzy integral of log-convex functions

被引:0
|
作者
Sadegh Abbaszadeh
Madjid Eshaghi
Manuel de la Sen
机构
[1] Faculty of Mathematics,Department of Mathematics
[2] Statistics and Computer Sciences,Center of Excellence in Nonlinear Analysis and Applications
[3] Semnan University,Department of Electricity and Electronics
[4] Semnan University,undefined
[5] University of the Basque Country,undefined
关键词
Sugeno fuzzy integral; the Hadamard inequality; log-convex function; seminormed Sugeno fuzzy integral; 26A51; 28E10; 39B62;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we give an upper bound for the Sugeno fuzzy integral of log-convex functions using the classical Hadamard integral inequality. We present a geometric interpretation and some examples in the framework of the Lebesgue measure to illustrate the results.
引用
收藏
相关论文
共 50 条
  • [31] Some Weighted Midpoint Type Inequalities For Differentiable log-Convex Functions
    Meftah, Badreddine
    Benchettah, Djaber Chemseddine
    Lakhdari, Abdelghani
    Merad, Meriem
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43
  • [32] The supportable QoS region of a multiuser system with log-convex interference functions
    Boche, Holger
    Schubert, Martin
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PTS 1-3, PROCEEDINGS, 2007, : 677 - +
  • [33] Strict convexity of the QoS feasible region for log-convex interference functions
    Schubert, Martin
    Boche, Holger
    Stanczak, Slawomir
    2006 FORTIETH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, VOLS 1-5, 2006, : 478 - +
  • [34] Nash bargaining for log-convex problems
    Qin, Cheng-Zhong
    Shi, Shuzhong
    Tan, Guofu
    ECONOMIC THEORY, 2015, 58 (03) : 413 - 440
  • [35] Log-convex and Stieltjes moment sequences
    Wang, Yi
    Zhu, Bao-Xuan
    ADVANCES IN APPLIED MATHEMATICS, 2016, 81 : 115 - 127
  • [36] Nash bargaining for log-convex problems
    Cheng-Zhong Qin
    Shuzhong Shi
    Guofu Tan
    Economic Theory, 2015, 58 : 413 - 440
  • [37] Proof of the Log-Convex Density Conjecture
    Chambers, Gregory R.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2019, 21 (08) : 2301 - 2332
  • [38] Interpolating Jensen-type Operator Inequalities for Log-convex and Superquadratic Functions
    Bakherad, Mojtaba
    Kian, Mohsen
    Krnic, Mario
    Ahmadi, Seyyed Alireza
    FILOMAT, 2018, 32 (13) : 4523 - 4535
  • [39] On the isoperimetric problem for radial log-convex densities
    A. Figalli
    F. Maggi
    Calculus of Variations and Partial Differential Equations, 2013, 48 : 447 - 489
  • [40] Log-convex sequences and nonzero proximate orders
    Jimenez-Garrido, Javier
    Sanz, Javier
    Schindl, Gerhard
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (02) : 1572 - 1599