The price elasticity of marijuana demand: evidence from crowd-sourced transaction data

被引:0
|
作者
Adam J. Davis
Karl R. Geisler
Mark W. Nichols
机构
[1] ADM Energy,Department of Economics Applied Statistics, and International Business
[2] New Mexico State University,Department of Economics
[3] University of Nevada,undefined
[4] Reno,undefined
来源
Empirical Economics | 2016年 / 50卷
关键词
Elasticity; Marijuana demand; Instrumental variable estimation; D12;
D O I
暂无
中图分类号
学科分类号
摘要
This paper uses crowd-sourced transaction data from a cross section of the USA to examine demand for marijuana. State and regional variations in consumption, price, and quality are also explored. Our data are a unique cross section of over 23,000 actual marijuana transactions where price, quantity, and quality are reported, allowing for an estimation of the full demand elasticity rather than the participation elasticity. In addition, we account for the endogeneity of price by using instrumental variable estimation to calculate price elasticity. Price elasticity of demand estimates ranges between -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}0.67 and -\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-$$\end{document}0.79. Noticeable price differences are found between high-, medium-, and low-quality marijuana, with high-quality marijuana, at $13.77 per gram, 144 % greater than low-quality marijuana, at $5.63 a gram. Significant price variation is also found by medical marijuana status and census region, although this variation depends critically on the quality of the marijuana.
引用
收藏
页码:1171 / 1192
页数:21
相关论文
共 50 条
  • [31] Detecting Label Errors in Crowd-Sourced Smartphone Sensor Data
    Bo, Xiao
    Poellabauer, Christian
    O'Brien, Megan K.
    Mummidisetty, Chaithanya Krishna
    Jayaraman, Arun
    3RD INTERNATIONAL WORKSHOP ON SOCIAL SENSING (SOCIALSENS 2018), 2018, : 20 - 25
  • [32] Collecting Weighted Coercions from Crowd-Sourced Lexical Data for Compositional Semantic Analysis
    Lafourcade, Mathieu
    Mery, Bruno
    Mirzapour, Mehdi
    Moot, Richard
    Retore, Christian
    NEW FRONTIERS IN ARTIFICIAL INTELLIGENCE (JSAI-ISAI 2017), 2018, 10838 : 214 - 230
  • [33] Using Crowd-Sourced Data to Study Public Services: Lessons from Urban India
    Alison E. Post
    Anustubh Agnihotri
    Christopher Hyun
    Studies in Comparative International Development, 2018, 53 : 324 - 342
  • [34] AccentSpeech: Learning Accent from Crowd-sourced Data for Target Speaker TTS with Accents
    Zhang, Yongmao
    Wang, Zhichao
    Yang, Peiji
    Sun, Hongshen
    Wang, Zhisheng
    Xie, Lei
    2022 13TH INTERNATIONAL SYMPOSIUM ON CHINESE SPOKEN LANGUAGE PROCESSING (ISCSLP), 2022, : 76 - 80
  • [35] A Map Inference Approach Using Signal Processing from Crowd-sourced GPS Data
    He, Eric
    Bai, Fan
    Hay, Curtis
    Chen, Jinzhu
    Bhagavatula, Vijayakumar
    ACM TRANSACTIONS ON SPATIAL ALGORITHMS AND SYSTEMS, 2021, 7 (02)
  • [36] Using Crowd-Sourced Data to Study Public Services: Lessons from Urban India
    Post, Alison E.
    Agnihotri, Anustubh
    Hyun, Christopher
    STUDIES IN COMPARATIVE INTERNATIONAL DEVELOPMENT, 2018, 53 (03) : 324 - 342
  • [37] MapGENIE: Grammar-enhanced Indoor Map Construction from Crowd-sourced Data
    Philipp, Damian
    Baier, Patrick
    Dibak, Christoph
    Duerr, Frank
    Rothermel, Kurt
    Becker, Susanne
    Peter, Michael
    Fritsch, Dieter
    2014 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS (PERCOM), 2014, : 139 - 147
  • [38] Autonomous convergence mechanisms for collaborative crowd-sourced data-modeling
    Luebben, Christian
    Pahl, Marc-Oliver
    PROCEEDINGS OF THE IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM 2022, 2022,
  • [39] Crowd-sourced trait data can be used to delimit global biomes
    Scheiter, Simon
    Wolf, Sophie
    Kattenborn, Teja
    BIOGEOSCIENCES, 2024, 21 (21) : 4909 - 4926
  • [40] Using Qualitative Spatial Logic for Validating Crowd-Sourced Geospatial Data
    Du, Heshan
    Hai Nguyen
    Alechina, Natasha
    Logan, Brian
    Jackson, Michael
    Goodwin, John
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 3948 - 3953