In vitro digestion and fermentation by human fecal microbiota of polysaccharides from Clitocybe squamulose

被引:50
|
作者
Guo, Dongdong [1 ]
Lei, Jiayu [1 ]
He, Chang [1 ]
Peng, Zhijie [1 ]
Liu, Rongzhu [1 ]
Pan, Xu [1 ]
Meng, Junlong [1 ,3 ]
Feng, Cuiping [1 ,2 ]
Xu, Lijing [1 ,2 ]
Cheng, Yanfen [1 ,2 ]
Chang, Mingchang [1 ,3 ]
Geng, Xueran [1 ,2 ]
机构
[1] Shanxi Agr Univ, Coll Food Sci & Engn, Taigu 030801, Shanxi, Peoples R China
[2] Shanxi Key Lab Edible Fungi Loess Plateau, Taigu 030801, Shanxi, Peoples R China
[3] Shanxi Engn Res Ctr Edible Fungi, Taigu 030801, Shanxi, Peoples R China
关键词
Clitocybe squamulosa; In vitro digestion; Fecal fermentation; Gut microbiota; GLUCOSIDASE INHIBITORY-ACTIVITY; GASTROINTESTINAL DIGESTION; ANTIOXIDANT ACTIVITY; GUT MICROBIOTA; STRUCTURAL-CHARACTERIZATION; EXTRACTION OPTIMIZATION; MOLECULAR-WEIGHT; SIMULATED SALIVA; FRUITING BODIES; BLACK-CURRANT;
D O I
10.1016/j.ijbiomac.2022.03.126
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The present study aimed to evaluate the effects of in vitro simulated saliva-gastrointestinal digestion and fecal fermentation behavior on the chemical composition, structure and bioactivity of polysaccharides from Clitocybe squamulosa (CSFP). Results showed that gastric digestion significantly changed the chemical composition and structural properties of CSFP, such as total uronic acid, reducing sugar, molecular weight, rheological properties, particle size, and microscopic morphology. In particular, the molecular weight decreased from 19,480 Da to 10,945 Da, while the reducing-sugar content increased from 0.149 mg/mL to 0.293 mg/mL. Gastric digestion also affected the biological activity of CSFP. Although after gastric digestion, CSFP retained its vigorous antioxidant activity, ability to inhibit alpha-amylase activity, and the binding ability to bile acid, fat, and free cholesterol in vitro. However, there was an apparent weakening trend. After in vitro fermentation of gut microbiota, the content of total sugar was significantly decreased from 11.6 mg/mL to 2.4 mg/mL, and the pH value in the fecal culture significantly decreased to 5.20, indicating that CSFP could be broken down and utilized by gut microbiota. Compared to the blank, the concentrations of total short-chain fatty acids (SCFAs) including acetic, propionic and n-butyric significantly increased. Simultaneously, CSFP could remarkably reduce the proportions of Firmicutes and Bacteroides (F/B) and promote the growth of some beneficial intestinal microbiota. Therefore, CSFP can potentially be a new functional food as prebiotics to promote human gut health.
引用
收藏
页码:343 / 355
页数:13
相关论文
共 50 条
  • [21] In vitro fermentation of sulfated polysaccharides from E. prolifera and L. japonica by human fecal microbiota
    Kong, Qing
    Dong, Shiyuan
    Gao, Jian
    Jiang, Chaoyu
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2016, 91 : 867 - 871
  • [22] In vitro digestion and fermentation behaviors of polysaccharides from Choerospondias axillaris fruit and its effect on human gut microbiota
    Dong, Jinjiao
    Wang, Wenjun
    Zheng, Guodong
    Wu, Nansheng
    Xie, Jingjing
    Xiong, Shiyi
    Tian, Panting
    Li, Jingen
    CURRENT RESEARCH IN FOOD SCIENCE, 2024, 8
  • [23] Simulated Digestion and Fermentation in Vitro by Human Gut Microbiota of Polysaccharides from Bee Collected Pollen of Chinese Wolfberry
    Zhou, Wangting
    Yan, Yamei
    Mi, Jia
    Zhang, Hongcheng
    Lu, Lu
    Luo, Qing
    Li, Xiaoying
    Zeng, Xiaoxiong
    Cao, Youlong
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2018, 66 (04) : 898 - 907
  • [24] In vitro digestion and fermentation of polysaccharides from nine common Polygonatum spp. and their impact on human gut microbiota
    Hu, Yunfei
    Tang, Yuchen
    Zhang, Jianyu
    Guo, Xuting
    Wang, Jiaru
    Zhang, Xinmeng
    Li, Zheng
    Yu, Hao
    Li, Wenlong
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 280
  • [25] Effect of in vitro digestion and fermentation of kiwifruit pomace polysaccharides on structural characteristics and human gut microbiota
    Chen, Mengyin
    Chen, Xuefeng
    Guo, Yuxi
    Liu, Nannan
    Wang, Ketang
    Gong, Pin
    Zhao, Yanni
    Cai, Luyang
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 253
  • [26] In vitro digestion and fecal fermentation of Siraitia grosvenorii polysaccharide and its impact on human gut microbiota
    Guo, Yuxi
    Chen, Xuefeng
    Gong, Pin
    Wang, Mengrao
    Yao, Wenbo
    Yang, Wenjuan
    Chen, Fuxin
    FOOD & FUNCTION, 2022, 13 (18) : 9443 - 9458
  • [27] Effects of molecular weight on simulated digestion and fecal fermentation of polysaccharides from longan pulp in vitro
    Xia, Chunmei
    Xu, Xiang
    Zhang, Ruifen
    Su, Dongxiao
    Jia, Xuchao
    Deng, Mei
    Lee, Yuan-Kun
    Zhang, Mingwei
    Huang, Fei
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 306
  • [28] Effect of extraction methods of polysaccharides from Tricholoma mongolicum Imai on digestion and fecal fermentation in vitro
    Yang, Bing
    Zhang, Xinyu
    Zhu, Jingbo
    Wu, Qunjun
    Yang, Boxiang
    Chitrakar, Bimal
    Sang, Yaxin
    FOOD CHEMISTRY-X, 2024, 24
  • [29] In vitro simulated digestion and fermentation behaviors of polysaccharides from Pleurotus cornucopiae and their impact on the gut microbiota
    Jiang, Chunping
    Li, Hongyu
    Li, Junqi
    Zou, Guangying
    Li, Cheng
    Fang, Zhengfeng
    Hu, Bin
    Wu, Wenjuan
    Li, Xiaolin
    Zeng, Zhen
    Luo, Qingying
    Liu, Yuntao
    FOOD & FUNCTION, 2024, 15 (19) : 10051 - 10066
  • [30] In vitro fermentation of the polysaccharides from Cyclocarya paliurus leaves by human fecal inoculums
    Min, Fang-Fang
    Hu, Jie-Lun
    Nie, Shao-Ping
    Xie, Jian-Hua
    Xie, Ming-Yong
    CARBOHYDRATE POLYMERS, 2014, 112 : 563 - 568