Spindle thermal error prediction approach based on thermal infrared images: A deep learning method

被引:67
|
作者
Wu Chengyang [1 ]
Xiang Sitong [1 ,2 ]
Xiang Wansheng [3 ]
机构
[1] Ningbo Univ, Fac Mech Engn & Mech, Ningbo 315211, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Mech Engn, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China
[3] Ningbo Jingdiao CNC Engn Co Ltd, Ningbo 315211, Peoples R China
基金
中国国家自然科学基金;
关键词
Spindle; Thermal error; Thermal image; Convolutional neural network; Deep learning; ROBUST MODELING METHOD; COMPENSATION;
D O I
10.1016/j.jmsy.2021.01.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It is essential to precisely model the spindle thermal error due to its dramatic influence on the machining accuracy. In this paper, the deep learning convolutional neural network (CNN) is used to model the axial and radial thermal errors of horizontal and vertical spindles. Unlike the traditional CNN model that relies entirely on thermal images, this model combines the thermal image with the thermocouple data to fully reflect the temperature field of the spindle. After pre-processing and data enhancement of the thermal images, a multiclassification model based on CNN is built and verified for accuracy and robustness. The experimental results show that the model prediction accuracy is approximately 90 %-93 %, which is higher than the BP model. When the spindle rotation speed changes, the model also shows good robustness. Real cutting tests show that the deep learning model has good applicability to the spindle thermal error prediction and compensation.
引用
收藏
页码:67 / 80
页数:14
相关论文
共 50 条
  • [31] Hybrid Method Incorporating a Rule-Based Approach and Deep Learning for Prescription Error Prediction
    Lee, Seunghee
    Shin, Jeongwon
    Kim, Hyeon Seong
    Lee, Min Je
    Yoon, Jung Min
    Lee, Sohee
    Kim, Yongsuk
    Kim, Jong-Yeup
    Lee, Suehyun
    DRUG SAFETY, 2022, 45 (01) : 27 - 35
  • [32] A thermal deformation prediction method for grinding machine’ spindle
    Jinwei Fan
    Peitong Wang
    Haohao Tao
    Ri Pan
    The International Journal of Advanced Manufacturing Technology, 2022, 118 : 1125 - 1139
  • [33] A thermal deformation prediction method for grinding machine' spindle
    Fan, Jinwei
    Wang, Peitong
    Tao, Haohao
    Pan, Ri
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 118 (3-4): : 1125 - 1139
  • [34] Deep Learning Detection Method of Photovoltaic Module Hot Spot Based on Infrared Thermal Image
    Wang D.
    Yao Y.
    Zhang S.
    Zhu R.
    Zhao W.
    Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2023, 43 (24): : 9608 - 9615
  • [35] The influence of thermophysical parameters on the prediction accuracy of the spindle thermal error model
    Kuo Liu
    Lei Song
    Haibo Liu
    Wei Han
    Mingjia Sun
    Yongqing Wang
    The International Journal of Advanced Manufacturing Technology, 2021, 115 : 617 - 626
  • [36] Thermal error prediction model of a motorized spindle considering variable preload
    Ye Dai
    Xueshi Tao
    Liyu Xuan
    Hang Qu
    Gang Wang
    The International Journal of Advanced Manufacturing Technology, 2022, 121 : 4745 - 4756
  • [37] Thermal error prediction model of a motorized spindle considering variable preload
    Dai, Ye
    Tao, Xueshi
    Xuan, Liyu
    Qu, Hang
    Wang, Gang
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 121 (7-8): : 4745 - 4756
  • [38] The influence of thermophysical parameters on the prediction accuracy of the spindle thermal error model
    Liu, Kuo
    Song, Lei
    Liu, Haibo
    Han, Wei
    Sun, Mingjia
    Wang, Yongqing
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 115 (1-2): : 617 - 626
  • [39] Super Resolution with Deep Learning in Thermal Images
    Oz, Mehmet Can
    Navruz, Tugba Selcen
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [40] Thermal error prediction for grinding machine spindle based on heat conduction and convolutional neural network
    Wang P.
    Fan J.
    Ren X.
    Li Z.
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2023, 31 (01): : 129 - 140