Bootstrap confidence intervals of CpTk for two parameter logistic exponential distribution with applications

被引:15
|
作者
Saha, Mahendra [1 ]
Dey, Sanku [2 ]
Maiti, Sudhansu S. [3 ]
机构
[1] Cent Univ Rajasthan, Dept Stat, Ajmer, Rajasthan, India
[2] St Anthonys Coll, Dept Stat, Shillong, Meghalaya, India
[3] Visva Bharati Univ, Dept Stat, Santini Ketan, W Bengal, India
关键词
Generalized process capability index; Maximum likelihood estimate; Bootstrap confidence interval; Logistic-exponential and exponential distribution; PROCESS CAPABILITY INDEX; WEIBULL; MODEL;
D O I
10.1007/s13198-019-00789-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Process capability index is an important statistical technique that measures the ability of a process and hence it is used in quality control to quantify the relation between the actual performance of the process and the preset specification of the product. In this article bootstrap confidence intervals (BCIs) of generalized process capability index (GPCI) C-pTk proposed by Maiti et al. (J Qual Technol Quant Manag 7(3):279-300, 2010) are studied through simulation when the underlying distribution is logistic-exponential (LE). The model parameters are estimated by the maximum likelihood method of estimation. Three non-parametric (NPR) as well as parametric (PR) BCIs, namely, percentile bootstrap (P-boot), student's t bootstrap (T-boot) and bias-corrected percentile bootstrap (BCp-boot) are considered for obtaining confidence intervals (CIs) of GPCI C-pTk. Through extensive Monte Carlo simulations, we examine the estimated coverage probabilities and average widths of the BCIs for two parameter LE distribution and in particular for exponential distribution. Simulation results show that the estimated coverage probabilities of the P-boot CI perform better than their counterparts. Finally, three real data sets are analyzed for illustrative purposes.
引用
收藏
页码:623 / 631
页数:9
相关论文
共 50 条
  • [41] A generalized confidence limit for the reliability function of a two-parameter exponential distribution
    Roy, A
    Mathew, T
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2005, 128 (02) : 509 - 517
  • [42] Optimal confidence regions for the two-parameter exponential distribution based on records
    Asgharzadeh, A.
    Bagheri, S. F.
    Ibrahim, N. A.
    Abubakar, M. R.
    COMPUTATIONAL STATISTICS, 2020, 35 (01) : 309 - 326
  • [43] Optimal confidence regions for the two-parameter exponential distribution based on records
    A. Asgharzadeh
    S. F. Bagheri
    N. A. Ibrahim
    M. R. Abubakar
    Computational Statistics, 2020, 35 : 309 - 326
  • [44] Confidence interval estimations of the parameter for one parameter exponential distribution
    Sinsomboonthong, Juthaphorn
    IAENG International Journal of Applied Mathematics, 2015, 45 (04) : 343 - 353
  • [45] Randomized confidence intervals of a parameter for a family of discrete exponential type distributions
    Akahira, M
    Takahashi, K
    Takeuchi, K
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1997, 26 (03) : 1103 - 1128
  • [46] Randomized confidence intervals of a parameter for a family of discrete exponential type distributions
    Akahira, Masafumi
    Takahashi, Kunihiko
    Takeuchi, Kei
    Communications in Statistics Part B: Simulation and Computation, 1997, 26 (03): : 1103 - 1128
  • [47] Sequential fixed-accuracy confidence intervals for the stress–strength reliability parameter for the exponential distribution: two-stage sampling procedure
    Ashkan Khalifeh
    Eisa Mahmoudi
    Ajit Chaturvedi
    Computational Statistics, 2020, 35 : 1553 - 1575
  • [48] Bootstrap Confidence Intervals of the Modified Process Capability Index for Weibull distribution
    Kashif, Muhammad
    Aslam, Muhammad
    Rao, G. Srinivasa
    AL-Marshadi, Ali Hussein
    Jun, Chi-Hyuck
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2017, 42 (11) : 4565 - 4573
  • [49] Bootstrap Confidence Intervals of the Modified Process Capability Index for Weibull distribution
    Muhammad Kashif
    Muhammad Aslam
    G. Srinivasa Rao
    Ali Hussein AL-Marshadi
    Chi-Hyuck Jun
    Arabian Journal for Science and Engineering, 2017, 42 : 4565 - 4573
  • [50] Exact confidence intervals for the shape parameter of the gamma distribution
    Iliopoulos, George
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (08) : 1635 - 1642