An iterative approximation procedure for the distribution of the maximum of a random walk

被引:3
|
作者
Stadje, W [1 ]
机构
[1] Univ Osnabruck, Fachbereich Math Informat, D-49069 Osnabruck, Germany
关键词
random walk; maximum; approximation; embedded random walk;
D O I
10.1016/S0167-7152(00)00124-3
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let I(F) be the distribution function (d.f.) of the maximum of a random walk whose i.i.d. increments have the common d.f. F and a negative mean. We derive a recursive sequence of embedded random walks whose underlying d.f.'s Fk converge to the d.f. of the first ladder variable and satisfy F greater than or equal to F-1 greater than or equal to F-2 greater than or equal to ... on [0, infinity) and I(F) = I(F-1) = I(F-2) = .... Using these random walks we obtain improved upper bounds for the difference of I(F) and the d.f of the maximum of the random walk after finitely many steps. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:375 / 381
页数:7
相关论文
共 50 条
  • [11] Saddlepoint approximation to the distribution of the total distance of the continuous time random walk
    Gatto, Riccardo
    EUROPEAN PHYSICAL JOURNAL B, 2017, 90 (12):
  • [12] Random walk with random resetting to the maximum position
    Majumdar, Satya N.
    Sabhapandit, Sanjib
    Schehr, Gregory
    PHYSICAL REVIEW E, 2015, 92 (05):
  • [13] Saddlepoint approximation to the distribution of the total distance of the continuous time random walk
    Riccardo Gatto
    The European Physical Journal B, 2017, 90
  • [14] The limit distribution of the maximum increment of a random walk with regularly varying jump size distribution
    Mikosch, Thomas
    Rackauskas, Alfredas
    BERNOULLI, 2010, 16 (04) : 1016 - 1038
  • [15] A random walk procedure for evaluating probability distribution functions in communication systems
    Yevick, D
    Bardyszewski, W
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (01) : 108 - 110
  • [16] Incremental and On-demand Random Walk for Iterative Power Distribution Network Analysis
    Shi, Yiyu
    Yao, Wei
    Xiong, Jinjun
    He, Lei
    PROCEEDINGS OF THE ASP-DAC 2009: ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE 2009, 2009, : 185 - +
  • [17] SEARCH FOR THE MAXIMUM OF A RANDOM-WALK
    ODLYZKO, AM
    RANDOM STRUCTURES & ALGORITHMS, 1995, 6 (2-3) : 275 - 295
  • [18] Maximum of a catalytic branching random walk
    Bulinskaya, E. Vl.
    RUSSIAN MATHEMATICAL SURVEYS, 2019, 74 (03) : 546 - 548
  • [19] The maximum relaxation time of a random walk
    Aksoy, Sinan G.
    Chung, Fan
    Tait, Michael
    Tobin, Josh
    ADVANCES IN APPLIED MATHEMATICS, 2018, 101 : 1 - 14
  • [20] A NOTE ON THE MAXIMUM OF A RANDOM-WALK
    STADJE, W
    STATISTICS & PROBABILITY LETTERS, 1995, 23 (03) : 227 - 231