Mapping annual mean ground-level PM2.5 concentrations using Multiangle Imaging Spectroradiometer aerosol optical thickness over the contiguous United States
被引:3
|
作者:
Liu, Y
论文数: 0引用数: 0
h-index: 0
机构:Harvard Univ, Div Engn & Appl Sci, Cambridge, MA USA
Liu, Y
Park, RJ
论文数: 0引用数: 0
h-index: 0
机构:Harvard Univ, Div Engn & Appl Sci, Cambridge, MA USA
Park, RJ
Jacob, DJ
论文数: 0引用数: 0
h-index: 0
机构:Harvard Univ, Div Engn & Appl Sci, Cambridge, MA USA
Jacob, DJ
Li, QB
论文数: 0引用数: 0
h-index: 0
机构:Harvard Univ, Div Engn & Appl Sci, Cambridge, MA USA
Li, QB
Kilaru, V
论文数: 0引用数: 0
h-index: 0
机构:Harvard Univ, Div Engn & Appl Sci, Cambridge, MA USA
Kilaru, V
Sarnat, JA
论文数: 0引用数: 0
h-index: 0
机构:Harvard Univ, Div Engn & Appl Sci, Cambridge, MA USA
Sarnat, JA
机构:
[1] Harvard Univ, Div Engn & Appl Sci, Cambridge, MA USA
[2] Harvard Univ, Dept Earth & Planetary Sci, Cambridge, MA 02138 USA
[3] US EPA, Natl Exposure Res Lab, Res Triangle Pk, NC USA
[4] Harvard Univ, Sch Publ Hlth, Dept Environm Hlth, Boston, MA 02115 USA
[1] We present a simple approach to estimating ground-level fine particulate matter (PM2.5, particles smaller than 2.5 mm in diameter) concentrations by applying local scaling factors from a global atmospheric chemistry model (GEOS-CHEM with GOCART dust and sea salt data) to aerosol optical thickness (AOT) retrieved by the Multiangle Imaging Spectroradiometer (MISR). The resulting MISR PM2.5 concentrations are compared with measurements from the U. S. Environmental Protection Agency's (EPA) PM2.5 compliance network for the year 2001. Regression analyses show that the annual mean MISR PM2.5 concentration is strongly correlated with EPA PM2.5 concentration ( correlation coefficient r = 0.81), with an estimated slope of 1.00 and an insignificant intercept, when three potential outliers from Southern California are excluded. The MISR PM2.5 concentrations have a root mean square error (RMSE) of 2.20 mug/m(3), which corresponds to a relative error (RMSE over mean EPA PM2.5 concentration) of approximately 20%. Using simulated aerosol vertical profiles generated by the global models helps to reduce the uncertainty in estimated PM2.5 concentrations due to the changing correlation between lower and upper tropospheric aerosols and therefore to improve the capability of MISR AOT in estimating surface-level PM2.5 concentrations. The estimated seasonal mean PM2.5 concentrations exhibited substantial uncertainty, particularly in the west. With improved MISR cloud screening algorithms and the dust simulation of global models, as well as a higher model spatial resolution, we expect that this approach will be able to make reliable estimation of seasonal average surface- level PM2.5 concentration at higher temporal and spatial resolution.
机构:
North China Inst Aerosp Engn, Sch Remote Sensing & Informat Engn, Langfang 065000, Peoples R China
Hebei Collaborat Innovat Ctr Aerosp Remote Sensin, Langfang 065000, Peoples R ChinaNorth China Inst Aerosp Engn, Sch Remote Sensing & Informat Engn, Langfang 065000, Peoples R China
Zhang, Wenhao
Zheng, Fengjie
论文数: 0引用数: 0
h-index: 0
机构:
Space Engn Univ, Sch Space Informat, Beijing 101416, Peoples R ChinaNorth China Inst Aerosp Engn, Sch Remote Sensing & Informat Engn, Langfang 065000, Peoples R China
Zheng, Fengjie
Zhang, Wenpeng
论文数: 0引用数: 0
h-index: 0
机构:
Tianjin Earthquake Agcy, Tianjin 300201, Peoples R ChinaNorth China Inst Aerosp Engn, Sch Remote Sensing & Informat Engn, Langfang 065000, Peoples R China
Zhang, Wenpeng
Yang, Xiufeng
论文数: 0引用数: 0
h-index: 0
机构:
North China Inst Aerosp Engn, Sch Remote Sensing & Informat Engn, Langfang 065000, Peoples R China
Hebei Collaborat Innovat Ctr Aerosp Remote Sensin, Langfang 065000, Peoples R ChinaNorth China Inst Aerosp Engn, Sch Remote Sensing & Informat Engn, Langfang 065000, Peoples R China
机构:
Guangzhou Inst Geog, Guangzhou 510070, Guangdong, Peoples R China
Key Lab Guangdong Utilizat Remote Sensing & Geog, Guangzhou 510070, Guangdong, Peoples R China
Guangdong Open Lab Geospatial Informat Technol &, Guangzhou 510070, Guangdong, Peoples R ChinaGuangzhou Inst Geog, Guangzhou 510070, Guangdong, Peoples R China
Hu, Hongda
Hu, Zhiyong
论文数: 0引用数: 0
h-index: 0
机构:
Univ West Florida, Dept Earth & Environm Sci, Pensacola, FL 32514 USAGuangzhou Inst Geog, Guangzhou 510070, Guangdong, Peoples R China
Hu, Zhiyong
Zhong, Kaiwen
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou Inst Geog, Guangzhou 510070, Guangdong, Peoples R China
Key Lab Guangdong Utilizat Remote Sensing & Geog, Guangzhou 510070, Guangdong, Peoples R China
Guangdong Open Lab Geospatial Informat Technol &, Guangzhou 510070, Guangdong, Peoples R ChinaGuangzhou Inst Geog, Guangzhou 510070, Guangdong, Peoples R China
Zhong, Kaiwen
Xu, Jianhui
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou Inst Geog, Guangzhou 510070, Guangdong, Peoples R China
Key Lab Guangdong Utilizat Remote Sensing & Geog, Guangzhou 510070, Guangdong, Peoples R China
Guangdong Open Lab Geospatial Informat Technol &, Guangzhou 510070, Guangdong, Peoples R ChinaGuangzhou Inst Geog, Guangzhou 510070, Guangdong, Peoples R China
Xu, Jianhui
Zhang, Feifei
论文数: 0引用数: 0
h-index: 0
机构:
Guangdong Univ Educ, Dept Comp Sci, Guangzhou 510310, Guangdong, Peoples R ChinaGuangzhou Inst Geog, Guangzhou 510070, Guangdong, Peoples R China
Zhang, Feifei
Zhao, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou Inst Geog, Guangzhou 510070, Guangdong, Peoples R China
Guangzhou Inst Geochem, Guangzhou 510640, Guangdong, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaGuangzhou Inst Geog, Guangzhou 510070, Guangdong, Peoples R China
Zhao, Yi
Wu, Pinghao
论文数: 0引用数: 0
h-index: 0
机构:
Guangzhou Inst Geog, Guangzhou 510070, Guangdong, Peoples R China
Guangzhou Inst Geochem, Guangzhou 510640, Guangdong, Peoples R China
Univ Chinese Acad Sci, Beijing 100049, Peoples R ChinaGuangzhou Inst Geog, Guangzhou 510070, Guangdong, Peoples R China