Vertex-disjoint paths joining adjacent vertices in faulty hypercubes

被引:1
|
作者
Cheng, Dongqin [1 ]
机构
[1] Jinan Univ, Dept Math, Guangzhou 510632, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Interconnection network; Hypercube; Path embedding; Vertex-disjoint; Fault-tolerant; BIPANCYCLICITY; COVERS; CYCLES;
D O I
10.1016/j.tcs.2019.06.015
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let Q(n) denote the n-dimensional hypercube and the set of faulty edges and faulty vertices in Q(n) be denoted by F-e and F-v, respectively. In this paper, we investigate Q(n) (n >= 3) with vertical bar F-e vertical bar + vertical bar F-v vertical bar <= n - 3 faulty elements, and demonstrate that there are two fault-free vertex-disjoint paths P[a, b] and P[c, d] satisfying that 2 <= l(P[a,b[) + l(P[c, d]) <= 2(n) - 2 vertical bar F-v vertical bar - 2, where 2 vertical bar(l(P[a, b]) + l(P[c. d])), (a, b), (c, d) is an element of E(Q(n)). The contribution of this paper is: (1) we can quickly obtain the interesting result that Q(n) - F-e is bipancyclic, where vertical bar F-e vertical bar n - 2 and n >= 3; (2) this result is a complement to Chen's part result (Chen (2009) [2]) in that our result shows that there are all kinds of two disjoint-free (S, T)-paths which contain 4, 6. 8, ..., 2(n) - 2 vertical bar F-v vertical bar vertices respectively in Q(n) when S = {a, c}, T = {b, d}, and (a, b). (c, d) is an element of E(Q(n)). Our result is optimal with respect to the number of fault-tolerant elements. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:219 / 224
页数:6
相关论文
共 50 条
  • [21] OPTIMAL COVERING OF CACTI BY VERTEX-DISJOINT PATHS
    MORAN, S
    WOLFSTAHL, Y
    THEORETICAL COMPUTER SCIENCE, 1991, 84 (02) : 179 - 197
  • [22] Dissemination of Information in Vertex-Disjoint Paths Mode
    Hromkovic, J.
    Klasing, R.
    Stoehr, E. A.
    Computers and Artificial Intelligence, 15 (04):
  • [23] Vertex-disjoint paths in Cayley color graphs
    Kulasinghe, P
    Bettayeb, S
    COMPUTERS AND ARTIFICIAL INTELLIGENCE, 1997, 16 (06): : 583 - 597
  • [24] Cycles in folded hypercubes with two adjacent faulty vertices
    Kuo, Che-Nan
    Cheng, Yu-Huei
    THEORETICAL COMPUTER SCIENCE, 2019, 795 : 115 - 118
  • [25] Many-to-many disjoint paths in faulty hypercubes
    Chen, Xie-Bin
    INFORMATION SCIENCES, 2009, 179 (18) : 3110 - 3115
  • [26] Hamiltonian cycles and paths in hypercubes with disjoint faulty edges
    Dybizbanski, Janusz
    Szepietowski, Andrzej
    INFORMATION PROCESSING LETTERS, 2021, 172 (172)
  • [27] The maximum number of disjoint paths in faulty enhanced hypercubes
    Liu, Hongmei
    Jin, Dan
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2019, 108 : 99 - 112
  • [28] Vertex-Disjoint Cycles Containing Specified Vertices in a Bipartite Graph
    Zhang, Shaohua
    Yan, Jin
    Jiang, Suyun
    GRAPHS AND COMBINATORICS, 2016, 32 (05) : 2171 - 2181
  • [29] Vertex-disjoint cycles containing specified vertices in a bipartite graph
    Chen, GT
    Enomoto, H
    Kawarabayashi, K
    Ota, K
    Lou, DJ
    Saito, A
    JOURNAL OF GRAPH THEORY, 2004, 46 (03) : 145 - 166
  • [30] Vertex-Disjoint Cycles Containing Specified Vertices in a Bipartite Graph
    Shaohua Zhang
    Jin Yan
    Suyun Jiang
    Graphs and Combinatorics, 2016, 32 : 2171 - 2181