Random Schrodinger operators with a background potential

被引:3
|
作者
Asatryan, Hayk [1 ]
Kirsch, Werner [1 ]
机构
[1] Fernuniv, Fac Math & Comp Sci, Univ Str 1, D-58097 Hagen, Germany
关键词
Random Schrodinger operators; essential spectrum; Anderson localization; integrated density of states; LARGE DISORDER; LOCALIZATION; DIFFUSION; ABSENCE;
D O I
10.1515/rose-2019-2022
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider one-dimensional random Schrodinger operators with a background potential, arising in the inverse scattering problem. We study the influence of the background potential on the essential spectrum of the random Schrodinger operator and obtain Anderson localization for a larger class of one-dimensional Schrodinger operators. Further, we prove the existence of the integrated density of states and give a formula for it.
引用
收藏
页码:253 / 259
页数:7
相关论文
共 50 条
  • [31] Moment analysis for localization in random Schrodinger operators
    Aizenman, M
    Elgart, A
    Naboko, S
    Schenker, JH
    Stolz, G
    INVENTIONES MATHEMATICAE, 2006, 163 (02) : 343 - 413
  • [32] Localization for Schrodinger operators with random vector potentials
    Ghribi, F.
    Hislop, P. D.
    Klopp, F.
    ADVENTURES IN MATHEMATICAL PHYSICS, 2007, 447 : 123 - +
  • [33] The integrated density of states for random schrodinger operators
    Kirsch, Werner
    Metzger, Bernd
    SPECTRAL THEORY AND MATHEMATICAL PHYSICS: A FESTSCHRIFT IN HONOR OF BARRY SIMON'S 60TH BIRTHDAY: ERGODIC SCHRODINGER OPERATORS, SINGULAR SPECTRUM, ORTHOGONAL POLYNOMIALS, AND INVERSE SPECTRAL THEORY, 2007, 76 : 649 - 696
  • [34] On Radial Schrodinger Operators with a Coulomb Potential
    Derezinski, Jan
    Richard, Serge
    ANNALES HENRI POINCARE, 2018, 19 (09): : 2869 - 2917
  • [35] ON SCHRODINGER AND DIRAC OPERATORS WITH AN OSCILLATING POTENTIAL
    Jecko, Thierry
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 64 (2-3): : 283 - 314
  • [36] SCHRODINGER OPERATORS WITH A COMPLEX VALUED POTENTIAL
    Schwartzman, Sol
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (12) : 4203 - 4204
  • [37] Schrodinger operators with potential localized on hypersurfaces
    Pouliquen, R
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (12): : 1295 - 1298
  • [38] Schrodinger operators with random sparse potentials. Existence of wave operators
    Krutikov, D
    LETTERS IN MATHEMATICAL PHYSICS, 2004, 67 (02) : 133 - 139
  • [39] INFINITE DIVISIBILITY OF RANDOM MEASURES ASSOCIATED TO SOME RANDOM SCHRODINGER OPERATORS
    Nakano, Fumihiko
    OSAKA JOURNAL OF MATHEMATICS, 2009, 46 (03) : 845 - 862
  • [40] Localization near band edges for random Schrodinger operators
    Barbaroux, JM
    Combes, JM
    Hislop, PD
    HELVETICA PHYSICA ACTA, 1997, 70 (1-2): : 16 - 43