Explainable emphysema detection on chest radiographs with deep learning

被引:4
|
作者
Calli, Erdi [1 ]
Murphy, Keelin [1 ]
Scholten, Ernst T. [1 ]
Schalekamp, Steven [1 ]
van Ginneken, Bram [1 ]
机构
[1] Diagnost Image Anal Grp, Radboudumc, Nijmegen, Netherlands
来源
PLOS ONE | 2022年 / 17卷 / 07期
关键词
COMPUTER-AIDED DIAGNOSIS; RECOGNITION;
D O I
10.1371/journal.pone.0267539
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a deep learning system to automatically detect four explainable emphysema signs on frontal and lateral chest radiographs. Frontal and lateral chest radiographs from 3000 studies were retrospectively collected. Two radiologists annotated these with 4 radiological signs of pulmonary emphysema identified from the literature. A patient with >= 2 of these signs present is considered emphysema positive. Using separate deep learning systems for frontal and lateral images we predict the presence of each of the four visual signs and use these to determine emphysema positivity. The ROC and AUC results on a set of 422 held-out cases, labeled by both radiologists, are reported. Comparison with a black-box model which predicts emphysema without the use of explainable visual features is made on the annotations from both radiologists, as well as the subset that they agreed on. DeLong's test is used to compare with the black-box model ROC and McNemar's test to compare with radiologist performance. In 422 test cases, emphysema positivity was predicted with AUCs of 0.924 and 0.946 using the reference standard from each radiologist separately. Setting model sensitivity equivalent to that of the second radiologist, our model has a comparable specificity (p = 0.880 and p = 0.143 for each radiologist respectively). Our method is comparable with the black-box model with AUCs of 0.915 (p = 0.407) and 0.935 (p = 0.291), respectively. On the 370 cases where both radiologists agreed (53 positives), our model achieves an AUC of 0.981, again comparable to the black-box model AUC of 0.972 (p = 0.289). Our proposed method can predict emphysema positivity on chest radiographs as well as a radiologist or a comparable black-box method. It additionally produces labels for four visual signs to ensure the explainability of the result. The dataset is publicly available at https://doi.org/10.5281/zenodo.6373392.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] A Fully Deep Learning Paradigm for Pneumoconiosis Staging on Chest Radiographs
    Sun, Wenjian
    Wu, Dongsheng
    Luo, Yang
    Liu, Lu
    Zhang, Hongjing
    Wu, Shuang
    Zhang, Yan
    Wang, Chenglong
    Zheng, Houjun
    Shen, Jiang
    Luo, Chunbo
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (10) : 5154 - 5164
  • [42] Deep Learning to Assess Cardiovascular Age From Chest Radiographs
    Raghu, Vineet
    Weiss, Jakob
    Hoffmann, Udo
    Aerts, Hugo
    Lu, Michael T.
    CIRCULATION, 2020, 142
  • [43] Deep Transfer Learning for Segmentation of Anatomical Structures in Chest Radiographs
    Oliveira, Hugo
    dos Santos, Jefersson A.
    PROCEEDINGS 2018 31ST SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2018, : 204 - 211
  • [44] Augmenting Interpretation of Chest Radiographs With Deep Learning Probability Maps
    Hurt, Brian
    Yen, Andrew
    Kligerman, Seth
    Hsiao, Albert
    JOURNAL OF THORACIC IMAGING, 2020, 35 (05) : 285 - 293
  • [45] Explainable Ransomware Detection with Deep Learning Techniques
    Giovanni Ciaramella
    Giacomo Iadarola
    Fabio Martinelli
    Francesco Mercaldo
    Antonella Santone
    Journal of Computer Virology and Hacking Techniques, 2024, 20 : 317 - 330
  • [46] Explainable Ransomware Detection with Deep Learning Techniques
    Ciaramella, Giovanni
    Iadarola, Giacomo
    Martinelli, Fabio
    Mercaldo, Francesco
    Santone, Antonella
    JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2024, 20 (02) : 317 - 330
  • [47] Validation of a Deep Learning Model for Detecting Chest Pathologies from Digital Chest Radiographs
    Ajmera, Pranav
    Onkar, Prashant
    Desai, Sanjay
    Pant, Richa
    Seth, Jitesh
    Gupte, Tanveer
    Kulkarni, Viraj
    Kharat, Amit
    Passi, Nandini
    Khaladkar, Sanjay
    Kulkarni, V. M.
    DIAGNOSTICS, 2023, 13 (03)
  • [48] Deep Learning Analysis of Chest Radiographs to Triage Patients with Acute Chest Pain Syndrome
    Kolossvary, Marton
    Raghu, Vineet K.
    Nagurney, John T.
    Hoffmann, Udo
    Lu, Michael T.
    RADIOLOGY, 2023, 306 (02)
  • [49] Deep Learning-based Automatic Detection Algorithm for Reducing Overlooked Lung Cancers on Chest Radiographs
    Jang, Sowon
    Song, Hwayoung
    Shin, Yoon Joo
    Kim, Junghoon
    Kim, Jihang
    Lee, Kyung Won
    Lee, Sung Soo
    Lee, Woojoo
    Lee, Seungjae
    Lee, Kyung Hee
    RADIOLOGY, 2020, 296 (03) : 652 - 661
  • [50] Deep Learning Techniques for the Real Time Detection of Covid19 and Pneumonia using Chest Radiographs
    Panwar, Avnish
    Yadav, Rishika
    Mishra, Kishor
    Gupta, Siddharth
    IEEE EUROCON 2021 - 19TH INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES, 2021, : 250 - 253