Optimal control problem for the equation of vibrations of an elastic plate

被引:1
|
作者
Guliyev, Hamlet F. [1 ]
Seyfullaeva, Khayala I. [2 ]
机构
[1] Baku State Univ, Z Khalilov Str 23, AZ-1148 Baku, Azerbaijan
[2] Sumgayit State Univ, Baku Str 1, AZ-5008 Sumgayit, Azerbaijan
关键词
Elastic plate; vibration equation; optimal control; existence theorem;
D O I
10.1515/gmj-2017-0004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An optimal control problem for the vibration equation of an elastic plate is considered when the control function is included in the coefficient of the highest order derivative and the right-hand side of the equation. The solvability of the initial boundary value problem is shown, the theorem on the existence of an optimal control is proved and a necessary condition of optimality in the form of an integral equation is obtained.
引用
收藏
页码:371 / 379
页数:9
相关论文
共 50 条
  • [31] Optimal Control of a Variational Inequality with Application to Equilibrium Problem of an Elastic Nonhomogeneous and Anisotropic Plate Resting on Unilateral Elastic Foundation
    Ján Lovíšek
    Computational Optimization and Applications, 1998, 11 : 137 - 175
  • [32] Plane Problem of Vibrations of an Elastic Floating Plate under Periodic External Loading
    L. A. Tkacheva
    Journal of Applied Mechanics and Technical Physics, 2004, 45 (3) : 420 - 427
  • [33] ELASTIC LINE AS A PROBLEM OF OPTIMAL-CONTROL
    BRAUN, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1993, 73 (7-8): : T722 - T724
  • [34] Optimal Control for an Elastic Frictional Contact Problem
    Benraouda, Ahlem
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2024, 17 (02): : 151 - 161
  • [35] Optimal control problem with an integral equation as the control object
    Filatova, Darya
    Grzywaczewski, Marek
    Osmolovskii, Nikolay
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (3-4) : 1235 - 1246
  • [36] Bilinear boundary optimal control of a Kirchhoff plate equation
    Bouhamed, Abdelhak
    El Kabouss, Abella
    Bouzahir, Hassane
    RESULTS IN CONTROL AND OPTIMIZATION, 2022, 9
  • [37] THE SYMMETRICAL VIBRATIONS OF A THIN ELASTIC PLATE
    SNEDDON, IN
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1945, 41 (01): : 27 - 43
  • [38] Measurement of vibrations of a plate on elastic foundation
    Kibirkštis E.
    Voloshin A.
    Vaitasius K.
    Pyr’Yev Y.
    Gegeckienė L.
    Baskutienė J.
    Ragulskis K.
    Ragulskis L.
    2018, Kauno Technologijos Universitetas (24): : 432 - 438
  • [40] FORCED VIBRATIONS OF AN INFINITE ELASTIC PLATE
    KRASNUSHKIN, PE
    DOKLADY AKADEMII NAUK SSSR, 1979, 244 (02): : 325 - 329