Convergence of natural adaptive least squares finite element methods

被引:13
|
作者
Carstensen, Carsten [1 ]
Park, Eun-Jae [2 ]
Bringmann, Philipp [1 ]
机构
[1] Humboldt Univ, Inst Math, Unter Linden 6, D-10099 Berlin, Germany
[2] Yonsei Univ, Dept Computat Sci & Engn, Seoul 03722, South Korea
基金
新加坡国家研究基金会;
关键词
OPTIMALITY; STANDARD;
D O I
10.1007/s00211-017-0866-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The first-order div least squares finite element methods provide inherent a posteriori error estimator by the elementwise evaluation of the functional. In this paper we prove Q-linear convergence of the associated adaptive mesh-refining strategy for a sufficiently fine initial mesh with some sufficiently large bulk parameter for piecewise constant right-hand sides in a Poisson model problem. The proof relies on some modification of known supercloseness results to non-convex polygonal domains plus the flux representation formula. The analysis is carried out for the lowest-order case in two-dimensions for the simplicity of the presentation.
引用
收藏
页码:1097 / 1115
页数:19
相关论文
共 50 条
  • [1] Convergence of natural adaptive least squares finite element methods
    Carsten Carstensen
    Eun-Jae Park
    Philipp Bringmann
    Numerische Mathematik, 2017, 136 : 1097 - 1115
  • [2] CONVERGENCE AND OPTIMALITY OF ADAPTIVE LEAST SQUARES FINITE ELEMENT METHODS
    Carstensen, Carsten
    Park, Eun-Jae
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) : 43 - 62
  • [3] A short note on plain convergence of adaptive least-squares finite element methods
    Fuhrer, Thomas
    Praetorius, Dirk
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (06) : 1619 - 1632
  • [4] How to prove optimal convergence rates for adaptive least-squares finite element methods
    Bringmann, Philipp
    JOURNAL OF NUMERICAL MATHEMATICS, 2023, 31 (01) : 43 - 58
  • [5] Adaptive Least Squares Finite Element Methods in Elasto-Plasticity
    Starke, Gerhard
    LARGE-SCALE SCIENTIFIC COMPUTING, 2010, 5910 : 671 - 678
  • [6] Adaptive least squares finite element method
    Afshar, MH
    COMPUTER TECHNIQUES FOR CIVIL AND STRUCTURAL ENGINEERING, 1999, : 223 - 228
  • [7] ADAPTIVE LEAST-SQUARES MIXED GENERALIZED MULTISCALE FINITE ELEMENT METHODS
    Chen, Fuchen
    Chung, Eric
    Jiang, Lijian
    MULTISCALE MODELING & SIMULATION, 2018, 16 (02): : 1034 - 1058
  • [8] Finite element methods of least-squares type
    Bochev, PB
    Gunzburger, MD
    SIAM REVIEW, 1998, 40 (04) : 789 - 837
  • [9] Minimum Residual and Least Squares Finite Element Methods
    Bochev, Pavel
    Demkowicz, Leszek
    Gopalakrishnan, Jay
    Gunzburger, Max
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (11) : 1479 - 1479
  • [10] Discrete least-squares finite element methods
    Keith, Brendan
    Petrides, Socratis
    Fuentes, Federico
    Demkowicz, Leszek
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 327 : 226 - 255