A short note on plain convergence of adaptive least-squares finite element methods

被引:8
|
作者
Fuhrer, Thomas [1 ]
Praetorius, Dirk [2 ]
机构
[1] Pontificia Univ Catolica Chile, Fac Matemat, Santiago, Chile
[2] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
基金
奥地利科学基金会;
关键词
Least squares finite element methods; Adaptive algorithm; Convergence; OPTIMALITY; SOLVER; FEM; FORMULATION; BEM;
D O I
10.1016/j.camwa.2020.07.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that adaptive least-squares finite element methods driven by the canonical least-squares functional converge under weak conditions on PDE operator, mesh refinement, and marking strategy. Contrary to prior works, our plain convergence does neither rely on sufficiently fine initial meshes nor on severe restrictions on marking parameters. Finally, we prove that convergence is still valid if a contractive iterative solver is used to obtain the approximate solutions (e.g., the preconditioned conjugate gradient method with optimal preconditioner). The results apply within a fairly abstract framework which covers a variety of model problems. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1619 / 1632
页数:14
相关论文
共 50 条
  • [1] How to prove optimal convergence rates for adaptive least-squares finite element methods
    Bringmann, Philipp
    JOURNAL OF NUMERICAL MATHEMATICS, 2023, 31 (01) : 43 - 58
  • [2] Convergence of natural adaptive least squares finite element methods
    Carsten Carstensen
    Eun-Jae Park
    Philipp Bringmann
    Numerische Mathematik, 2017, 136 : 1097 - 1115
  • [3] Convergence of natural adaptive least squares finite element methods
    Carstensen, Carsten
    Park, Eun-Jae
    Bringmann, Philipp
    NUMERISCHE MATHEMATIK, 2017, 136 (04) : 1097 - 1115
  • [4] CONVERGENCE AND OPTIMALITY OF ADAPTIVE LEAST SQUARES FINITE ELEMENT METHODS
    Carstensen, Carsten
    Park, Eun-Jae
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (01) : 43 - 62
  • [5] ADAPTIVE LEAST-SQUARES MIXED GENERALIZED MULTISCALE FINITE ELEMENT METHODS
    Chen, Fuchen
    Chung, Eric
    Jiang, Lijian
    MULTISCALE MODELING & SIMULATION, 2018, 16 (02): : 1034 - 1058
  • [6] Finite element methods of least-squares type
    Bochev, PB
    Gunzburger, MD
    SIAM REVIEW, 1998, 40 (04) : 789 - 837
  • [7] Discrete least-squares finite element methods
    Keith, Brendan
    Petrides, Socratis
    Fuentes, Federico
    Demkowicz, Leszek
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 327 : 226 - 255
  • [8] COLLECTIVE MARKING FOR ADAPTIVE LEAST-SQUARES FINITE ELEMENT METHODS WITH OPTIMAL RATES
    Carstensen, Carsten
    MATHEMATICS OF COMPUTATION, 2020, 89 (321) : 89 - 103
  • [9] Least-squares finite element methods for the elasticity problem
    Yang, SY
    Liu, JL
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 87 (01) : 39 - 60
  • [10] LEAST-SQUARES FINITE ELEMENT METHODS FOR QUANTUM ELECTRODYNAMICS
    Brannick, J.
    Ketelsen, C.
    Manteuffel, T.
    McCormick, S.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (01): : 398 - 417