An Efficient Two-Stage Genetic Algorithm for Flexible Job-Shop Scheduling

被引:18
|
作者
Rooyani, Danial [1 ]
Defersha, Fantahun M. [1 ]
机构
[1] Univ Guelph, Sch Engn, Guelph, ON, Canada
来源
IFAC PAPERSONLINE | 2019年 / 52卷 / 13期
基金
加拿大自然科学与工程研究理事会;
关键词
Flexible Job Shop Scheduling Problem (F[!text type='JS']JS[!/text]P); Genetic Algorithm (GA); Two Stage Genetic Algorithm (2SGA); Scheduling; TABU SEARCH;
D O I
10.1016/j.ifacol.2019.11.585
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Flexible job shop Scheduling Problem (FJSP) is considered as an expansion of classical Job-shop Scheduling Problem (JSP) where operations have a set of eligible machines, unlike only a single machine at JSP. FJSP is classified as non-polynomial-hard (NP-hard) problem. Researchers developed different techniques including Genetic Algorithm (GA) that is widely used for solving FJSP. Regular GAs for FJSP determine both operation sequencing and machine assignment through genetic search. In this paper, we developed a highly efficient Two-Stage Genetic Algorithm (2SGA) that in the first stage, GA coding only determines the order of operations for assignment. But machines are assigned through an evaluation process that starts from the first operation in the chromosome and chooses machines with the shortest completion time considering current machine load and process time. At the end of the first stage, we have a high-quality solution population that will be fed to the second stage. The second stage follows the regular GA approach for FJSP and searches the entire solution space to explorer solutions that might have been excluded at the first stage because of its greedy approach. The efficiency of proposed 2SGA has been successfully tested using published benchmark problems and also generated examples of different sizes. The quality of the 2SGA solutions greatly exceeds regular GA, especially for larger size problems. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:2519 / 2524
页数:6
相关论文
共 50 条
  • [41] A Hybrid Algorithm for Flexible Job-shop Scheduling Problem
    Tang, Jianchao
    Zhang, Guoji
    Lin, Binbin
    Zhang, Bixi
    CEIS 2011, 2011, 15
  • [42] Research on flexible job-shop scheduling problem based on a modified genetic algorithm
    Wei Sun
    Ying Pan
    Xiaohong Lu
    Qinyi Ma
    Journal of Mechanical Science and Technology, 2010, 24 : 2119 - 2125
  • [43] A Batch Scheduling Technique of Flexible Job-Shop Based on Improved Genetic Algorithm
    Li, Yueshu
    Wang, Aimin
    Zhang, Shengwei
    PROCEEDINGS OF 2022 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION (IEEE ICMA 2022), 2022, : 1463 - 1467
  • [44] Scheduling of a flexible job-shop using a multi-objective genetic algorithm
    Agrawal, Rajeev
    Pattanaik, L. N.
    Kumar, S.
    JOURNAL OF ADVANCES IN MANAGEMENT RESEARCH, 2012, 9 (02) : 178 - 188
  • [45] A general efficient neighborhood structure framework for the job-shop and flexible job-shop scheduling problems
    Tamssaouet, Karim
    Dauzere-Peres, Stephane
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2023, 311 (02) : 455 - 471
  • [46] AN IMPROVED GENETIC ALGORITHM FOR RESOURCE-CONSTRAINED FLEXIBLE JOB-SHOP SCHEDULING
    Wei, F. F.
    Cao, C. Y.
    Zhang, H. P.
    INTERNATIONAL JOURNAL OF SIMULATION MODELLING, 2021, 20 (01) : 201 - 211
  • [47] Research on flexible job-shop scheduling problem based on a modified genetic algorithm
    Sun, Wei
    Pan, Ying
    Lu, Xiaohong
    Ma, Qinyi
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2010, 24 (10) : 2119 - 2125
  • [48] Unified Genetic Algorithm Approach for Solving Flexible Job-Shop Scheduling Problem
    Park, Jin-Sung
    Ng, Huey-Yuen
    Chua, Tay-Jin
    Ng, Yen-Ting
    Kim, Jun-Woo
    APPLIED SCIENCES-BASEL, 2021, 11 (14):
  • [49] An Efficient Heuristic Algorithm for Flexible Job-Shop Scheduling Problem with Due Windows
    Ai, Yi
    Wang, Mengying
    Xue, Xiaoguang
    Yan, Chao-Bo
    2022 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2022, : 142 - 147
  • [50] The Improved Simulated Annealing Genetic Algorithm for Flexible Job-Shop Scheduling Problem
    Gu, Xiaolin
    Huang, Ming
    Liang, Xu
    PROCEEDINGS OF 2017 6TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2017), 2017, : 22 - 27