Robust ridge M-estimators with pretest and Stein-rule shrinkage for an intercept term

被引:8
|
作者
Shih, Jia-Han [1 ]
Lin, Ting-Yu [2 ]
Jimichi, Masayuki [3 ]
Emura, Takeshi [4 ,5 ]
机构
[1] Acad Sinica, Inst Stat Sci, Taipei, Taiwan
[2] Natl Cent Univ, Grad Inst Stat, Taoyuan, Taiwan
[3] Kwansei Gakuin Univ, Sch Business Adm, Nishinomiya, Hyogo, Japan
[4] Chang Gung Univ, Dept Informat Management, Taoyuan, Taiwan
[5] Chang Gung Mem Hosp Linkou, Div Hematol Oncol, 259,Wenhua 1st Rd, Taoyuan 33302, Taiwan
关键词
Multicollinearity; Outlier; Ridge estimator; Robust estimator; Shrinkage estimator; BIASED-ESTIMATION; REGRESSION; SELECTION;
D O I
10.1007/s42081-020-00089-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
If the data contain both multicollinearity and outliers, the ridge M-estimator is the preferred estimator to the usual least square estimator (Silvapulle, Aust J Stat 33:319-333, 1991). Many other estimators, such as the pretest ridge M-estimator and Stein-rule shrinkage ridge M-estimator, have been developed on the basis of the ridge M-estimator. However, all these existing estimators do not consider shrinkage estimation for the intercept term. Hence, there are some rooms for improving the existing estimators by improving the estimator for the intercept term. In this paper, we propose several new ridge M-estimators for regression coefficients and an intercept term by introducing pretest and Stein-rule shrinkage schemes. Our estimators are obtained by using the Jimichi-type ridge matrix that allows shrinkage operations to be applicable to both the intercept term and regression coefficients. We conduct Monte Carlo simulation studies to examine the performance of the proposed estimators. For demonstration, we analyze the corporate finance data from the Nikkei Economic Electronic Databank System in Japan, and the gene expression data from Japanese ovarian cancer patients.
引用
收藏
页码:107 / 150
页数:44
相关论文
共 50 条
  • [21] Image Diffusion In Connection With Robust M-Estimators
    Mandava, Ajay K.
    Regentova, Emma E.
    INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY AND SYSTEM DESIGN 2011, 2012, 30 : 1138 - 1145
  • [22] ROBUST M-ESTIMATORS IN DIFFUSION-PROCESSES
    YOSHIDA, N
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1988, 40 (04) : 799 - 820
  • [23] ROBUST M-ESTIMATORS OF MULTIVARIATE LOCATION AND SCATTER
    MARONNA, RA
    ANNALS OF STATISTICS, 1976, 4 (01): : 51 - 67
  • [24] A review on robust M-estimators for regression analysis
    de Menezes, D. Q. F.
    Prata, D. M.
    Secchi, A. R.
    Pinto, J. C.
    COMPUTERS & CHEMICAL ENGINEERING, 2021, 147 (147)
  • [25] ROBUST REGRESSION TREES BASED ON M-ESTIMATORS
    Galimberti, G.
    Pillati, M.
    Soffritti, G.
    STATISTICA, 2007, 67 (02) : 173 - 190
  • [26] Robust self-organization with M-estimators
    Lopez-Rubio, Ezequiel
    Palomo, Esteban J.
    Dominguez, Enrique
    NEUROCOMPUTING, 2015, 151 : 408 - 423
  • [27] Robust prediction limits based on M-estimators
    Giummole, F.
    Ventura, L.
    STATISTICS & PROBABILITY LETTERS, 2006, 76 (16) : 1735 - 1740
  • [28] MOST ROBUST M-ESTIMATORS IN THE INFINITESIMAL SENSE
    ROUSSEEUW, PJ
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 61 (04): : 541 - 551
  • [29] Robust regression with projection based M-estimators
    Chen, HF
    Meer, P
    NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, 2003, : 878 - 885
  • [30] A NOTE ON THE UNIQUENESS OF M-ESTIMATORS IN ROBUST REGRESSION
    CRISP, A
    BURRIDGE, J
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1993, 21 (02): : 205 - 208