Erdos and Renyi conjecture

被引:19
|
作者
Shelah, S [1 ]
机构
[1] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
[2] Rutgers State Univ, Dept Math, New Brunswick, NJ 08903 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jcta.1997.2845
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Affirming a conjecture of Erdos and Renyi we prove that for any (real number) c(1) > 0 for some c(2) > 0, if a graph G has no c(1) (log n) nodes on which the graph is complete or edgeless (i.e., G exemplifies \G\ negated right arrow (c(1) log n)(2)(2)), then G has at least 2(c2n)non-isomorphic (induced) subgraphs. (C) 1998 Academic Press.
引用
收藏
页码:179 / 185
页数:7
相关论文
共 50 条
  • [31] ERDOS-RENYI LAWS FOR GIBBS MEASURES
    COMETS, FM
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 162 (02) : 353 - 369
  • [32] The Erdos-Renyi theory of random graphs
    Bollobás, B
    PAUL ERDOS AND HIS MATHEMATICS II, 2002, 11 : 79 - 134
  • [33] Super Connectivity of Erdos-Renyi Graphs
    Shang, Yilun
    MATHEMATICS, 2019, 7 (03):
  • [34] An Erdos-Renyi law for nonconventional sums
    Kifer, Yuri
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2015, 20 : 1 - 8
  • [35] Erdos-Renyi laws for dynamical systems
    Denker, Manfred
    Nicol, Matthew
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2013, 87 : 497 - 508
  • [36] Generalization of a Theorem of Erdos and Renyi on Sidon Sequences
    Cilleruelo, Javier
    Kiss, Sandor Z.
    Ruzsa, Imre Z.
    Vinuesa, Carlos
    RANDOM STRUCTURES & ALGORITHMS, 2010, 37 (04) : 455 - 464
  • [37] AN ERDOS-GALLAI CONJECTURE
    PYBER, L
    COMBINATORICA, 1985, 5 (01) : 67 - 79
  • [38] The Cameron-Erdos conjecture
    Sapozhenko, A.A.
    Doklady Akademii Nauk, 2003, 393 (06) : 749 - 752
  • [39] About Erdos discrepancy conjecture
    Carbo-Dorca, Ramon
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2016, 54 (03) : 657 - 660
  • [40] A Note on the Erdos Matching Conjecture
    Martin, Ryan R.
    Patkos, Balazs
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2025,