Operators on Spaces of Functions and Measures. Vector Invariant (Fractal) Measures

被引:1
|
作者
Chitescu, Ion [1 ,2 ]
Ioana, Loredana [2 ]
Miculescu, Radu [3 ]
Nita, Lucian [4 ]
机构
[1] Univ Politehn Bucuresti, Splaiul Independentei 313, Bucharest 060042, Romania
[2] Univ Pitesti, Str Targul Vale 1, Pitesti 110040, Romania
[3] Transilvania Univ Brasov, Iuliu Maniu St 50, Brasov 500091, Romania
[4] Tech Univ Civil Engn, Lacul Tei Blvd 122-124, Bucharest 020396, Romania
关键词
Linear and continuous operators; Bochner integral; measures of bounded variation; Monge-Kantorovich norm and distance; contraction principle; invariant (fractal) measure; INFINITE; CALCULUS;
D O I
10.1007/s00025-018-0903-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a general schema involving measure spaces, contractions and linear and continuous operators. Within the framework of this schema we use our sesquilinear uniform integral and introduce some integral operators on continuous vector function spaces, which lead us to operators on spaces of vector measures. Using these last operators, we generalize the Markov operators, obtaining via contractions vector invariant (fractal) measures. Concrete examples are provided.
引用
收藏
页数:31
相关论文
共 50 条