Instability for massive scalar fields in Kerr-Newman spacetime

被引:30
|
作者
Huang, Yang
Liu, Dao-Jun [1 ]
Zhai, Xiang-hua
Li, Xin-zhou
机构
[1] Shanghai Normal Univ, Ctr Astrophys, 100 Guilin Rd, Shanghai 200234, Peoples R China
基金
中国国家自然科学基金;
关键词
QUASI-NORMAL MODES; BLACK-HOLES; STABILITY;
D O I
10.1103/PhysRevD.98.025021
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
It is known that a massive charged scalar field can trigger a superradiant instability in the background of a Kerr-Newman black hole. In this paper, we present a numerical study of such an instability by using the continued-fraction method. It is shown that for given a black hole, the unstable scalar mode with a specific azimuthal index m only occurs in a finite region in the parameter space of the scalar field. The maximum mass of the scalar cloud is exactly the upper bound of the mass of the unstable modes. We show that due to the electromagnetic interaction between the scalar field and the Kerr-Newman black hole, the growth rate of the instability can be 15.7% larger than that of a scalar field in Kerr spacetime of the same rotation parameter. In addition, we find a maximum value of the growth rate tau(-1) = 1.788 x 10(-7) M-1, which is about 4% larger than that in the Kerr case.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Revisiting superradiant stability of Kerr-Newman black holes under a charged massive scalar
    Myung, Yun Soo
    EUROPEAN PHYSICAL JOURNAL C, 2022, 82 (06):
  • [32] On neutral scalar radiation by a massive orbiting star in extremal Kerr-Newman black hole
    Xu, Xiao-Bao
    Bai, Nan
    Gao, Yi-Hong
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2015, 63 (06): : 323 - 330
  • [33] Exact solutions to sourceless charged massive scalar field equation on Kerr-Newman background
    Wu, SQ
    Cai, X
    JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (09) : 4538 - 4548
  • [34] Ultrahard fluid and scalar field in the Kerr-Newman metric
    Babichev, E.
    Chernov, S.
    Dokuchaev, V.
    Eroshenko, Yu.
    PHYSICAL REVIEW D, 2008, 78 (10):
  • [35] ELECTROMAGNETIC TEST FIELDS IN THE KERR-NEWMAN METRIC
    BOSE, SK
    JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (04) : 868 - 869
  • [36] STABLE SPHERICAL CONFIGURATIONS IN KERR-NEWMAN FIELDS
    LEVIN, ES
    SHEVLAKOV, GL
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1981, (03): : 118 - 119
  • [37] Equilibrium of a charged test particle with spin in the Kerr-Newman spacetime
    Aguirregabiria, JM
    Chamorro, A
    Suinaga, J
    Vishveshwara, CV
    CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (03) : 417 - 424
  • [38] Einstein-Podolsky-Rosen correlation in Kerr-Newman spacetime
    Said, Jackson
    Adami, Kristian Zarb
    PHYSICAL REVIEW D, 2010, 81 (12):
  • [39] Gravitational lensing in Kerr-Newman anti de Sitter spacetime
    Mangut, Mert
    Gursel, Huriye
    Sakalli, Izzet
    ASTROPARTICLE PHYSICS, 2023, 144
  • [40] Post-Newtonian light propagation in Kerr-Newman spacetime
    Jiang, Chunhua
    Lin, Wenbin
    PHYSICAL REVIEW D, 2018, 97 (02):