An Adaptive Row-based Weight Reuse Scheme for FPGA Implementation of Convolutional Neural Networks

被引:0
|
作者
Je, Hyeonseung [1 ]
Duy Thanh Nguyen [1 ]
Lee, Kyujoong [2 ]
Lee, Hyuk-Jae [1 ]
机构
[1] Seoul Natl Univ, Dept Elect & Comp Engn, Seoul, South Korea
[2] Sunmoon Univ, Dept Elect Engn, Asan, South Korea
关键词
FPGA; Convolutional neural networks; U-Net; Row-reuse scheme; Adaptive;
D O I
10.1109/ITC-CSCC52171.2021.9501490
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
There is an increasing need to implement the Convolutional Neural network (CNN) with an FPGA thanks to its design flexibility over an ASIC and low power consumption over a GPU. The size of the network and the resource of the target FPGA board should be considered to deploy the CNN Network successfully. However, previous works use the fixed dataflow which is not optimized for each layer. As a result, high on-chip buffer utilization and frequent memory access are required. The row-based weight reuse scheme is efficient in reducing input/output buffer size. However, it causes resource underutilization for layers with small feature maps size. This paper proposes an adaptive row reuse scheme by applying each level of row-reuse for each layer depending on its characteristic. Finally, the proposed design is implemented with a Xilinx KCU1500 board, and the accelerator achieves 994.74 GOPS of the throughput for U-Net. For general CNN implementation, the proposed scheme achieves 1080.9 GOPS when running VGG16 with 1.7 times less buffer size compared to previous works.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] A FPGA-based Hardware Accelerator for Multiple Convolutional Neural Networks
    Yao, Yuchen
    Duan, Qinghua
    Zhang, Zhiqian
    Gao, Jiabao
    Wang, Jian
    Yang, Meng
    Tao, Xinxuan
    Lai, Jinmei
    2018 14TH IEEE INTERNATIONAL CONFERENCE ON SOLID-STATE AND INTEGRATED CIRCUIT TECHNOLOGY (ICSICT), 2018, : 1075 - 1077
  • [42] A Novel Design of Adaptive and Hierarchical Convolutional Neural Networks using Partial Reconfiguration on FPGA
    Farhadi, Mohammad
    Ghasemi, Mehdi
    Yang, Yezhou
    2019 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2019,
  • [43] A Systematic FPGA Acceleration Design for Applications Based on Convolutional Neural Networks
    Dong, Hao
    Jiang, Li
    Li, Tianjian
    Liang, Xiaoyao
    ADVANCES IN MATERIALS, MACHINERY, ELECTRONICS II, 2018, 1955
  • [44] Abstraction in FPGA implementation of neural networks
    Ogrenci, Arif Selcuk
    PROCEEDINGS OF THE 9TH WSEAS INTERNATIONAL CONFERENCE ON NEURAL NETWORKS (NN' 08): ADVANCED TOPICS ON NEURAL NETWORKS, 2008, : 221 - 224
  • [45] Reconfigurable FPGA implementation of neural networks
    Hajduk, Zbigniew
    NEUROCOMPUTING, 2018, 308 : 227 - 234
  • [46] Implementation of FPGA-based Accelerator for Deep Neural Networks
    Tsai, Tsung-Han
    Ho, Yuan-Chen
    Sheu, Ming-Hwa
    2019 IEEE 22ND INTERNATIONAL SYMPOSIUM ON DESIGN AND DIAGNOSTICS OF ELECTRONIC CIRCUITS & SYSTEMS (DDECS), 2019,
  • [47] FPGA implementation of evolvable Block-based Neural Networks
    Merchant, Saumil
    Peterson, Gregory D.
    Park, Sang Ki
    Kong, Seong G.
    2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 3114 - +
  • [48] Occam: Optimal Data Reuse for Convolutional Neural Networks
    Gondimalla, Ashish
    Liu, Jianqiao
    Thottethodi, Mithuna
    Vijaykumar, T. N.
    ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2022, 20 (01)
  • [49] An Energy-Efficient FPGA-based Convolutional Neural Network Implementation
    Irmak, Hasan
    Alachiotis, Nikolaos
    Ziener, Daniel
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [50] Efficient FPGA-Based Convolutional Neural Network Implementation for Edge Computing
    Cuong, Pham-Quoc
    Thinh, Tran Ngoc
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2023, 14 (03) : 479 - 487