MGGPOD: A Monte Carlo suite for modeling instrumental line and continuum backgrounds in gamma-ray astronomy

被引:51
|
作者
Weidenspointner, G
Harris, MJ
Sturner, S
Teegarden, BJ
Ferguson, C
机构
[1] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[2] Univ Southampton, Dept Phys, Southampton SO17 1BJ, Hants, England
来源
关键词
gamma rays : observations; instrumentation : miscellaneous; line : identification; methods : data analysis; methods : numerical;
D O I
10.1086/425577
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Intense and complex instrumental backgrounds, against which the much smaller signals from celestial sources have to be discerned, are a notorious problem for low- and intermediate-energy gamma-ray astronomy (similar to50 keV-10 MeV). Therefore, a detailed qualitative and quantitative understanding of instrumental line and continuum backgrounds is crucial for most stages of gamma-ray astronomy missions, ranging from the design and development of new instrumentation through performance prediction to data reduction. We have developed MGGPOD, a user-friendly suite of Monte Carlo codes built around the widely used GEANT (ver. 3.21) package, to simulate ab initio the physical processes relevant for the production of instrumental backgrounds. These include the build-up and delayed decay of radioactive isotopes as well as the prompt de-excitation of excited nuclei, both of which give rise to a plethora of instrumental gamma-ray background lines in addition to continuum backgrounds. The MGGPOD package and documentation are publicly available online. We demonstrate the capabilities of the MGGPOD suite by modeling high-resolution gamma-ray spectra recorded by the Transient Gamma-Ray Spectrometer (TGRS) on board Wind during 1995. The TGRS is a Ge spectrometer operating in the 40 keV-8 MeV range. Because of its fine energy resolution, these spectra reveal the complex instrumental background in formidable detail, particularly the many prompt and delayed gamma-ray lines. We evaluate the successes and failures of the MGGPOD package in reproducing TGRS data and provide identifications for the numerous instrumental lines.
引用
收藏
页码:69 / 91
页数:23
相关论文
共 50 条
  • [21] MONTE-CARLO CALCULATIONS OF GAMMA-RAY BACKSCATTERING
    BERGER, MJ
    RASO, DJ
    RADIATION RESEARCH, 1960, 12 (01) : 20 - 37
  • [22] A benchmark for Monte Carlo simulation in gamma-ray spectrometry
    Lepy, M. C.
    Thiam, C.
    Anagnostakis, M.
    Galea, R.
    Gurau, D.
    Hurtado, S.
    Karfopoulos, K.
    Liang, J.
    Liu, H.
    Luca, A.
    Mitsios, I
    Potiriadis, C.
    Savva, M., I
    Thanh, T. T.
    Thomas, V
    Townson, R. W.
    Vasilopoulou, T.
    Zhang, M.
    APPLIED RADIATION AND ISOTOPES, 2019, 154
  • [23] Gamma-ray interaction in Ge: A Monte Carlo simulation
    Gao, F.
    Campbell, L. W.
    Devanathan, R.
    Xie, Y. L.
    Zhang, Y.
    Peurrung, A. J.
    Weber, W. J.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2007, 255 (01): : 286 - 290
  • [24] CALIBRATION OF DETECTORS FOR SOFT GAMMA-RAY ASTRONOMY - THE MONTE-CARLO APPROACH APPLIED TO THE SIGMA-TELESCOPE
    BARRET, D
    LAURENT, P
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1991, 307 (2-3): : 512 - 519
  • [25] INSTRUMENTAL ASPECTS OF GAMMA-RAY ASTRONOMY - SERIOUS NEED FOR NEW IDEAS AND DEVELOPMENTS
    KRAUSHAAR, WL
    ASTRONAUTICS & AERONAUTICS, 1969, 7 (07): : 28 - +
  • [26] AGILESim: Monte Carlo Simulation of the AGILE Gamma-Ray Telescope
    Fioretti, V
    Bulgarelli, A.
    Tavani, M.
    Sabatini, S.
    Aboudan, A.
    Argan, A.
    Cattaneo, P. W.
    Chen, A. W.
    Donnarumma, I
    Longo, F.
    Galli, M.
    Giuliani, A.
    Marisaldi, M.
    Parmiggiani, N.
    Rappoldi, A.
    ASTROPHYSICAL JOURNAL, 2020, 896 (01):
  • [27] A Monte Carlo based technique for analysing gamma-ray spectra
    Liu, Zhenzhou
    Chen, Jinxiang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2008, 19 (08)
  • [28] Monte Carlo Simulation of the TAIGA Hybrid Gamma-Ray Experiment
    A. Grinyuk
    E. Postnikov
    L. Sveshnikova
    Physics of Atomic Nuclei, 2020, 83 : 262 - 267
  • [29] MONTE-CARLO SIMULATION OF ASTROPHYSICAL GAMMA-RAY PRODUCTION
    MORRIS, DJ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1981, 26 (04): : 625 - 625