ON THE INTEGRALITY OF THE ELEMENTARY SYMMETRIC FUNCTIONS OF 1, 1/3, ..., 1/(2n-1)

被引:7
|
作者
Wang, Chunlin [1 ]
Hong, Shaofang [1 ]
机构
[1] Sichuan Univ, Math Coll, Chengdu 610064, Peoples R China
基金
美国国家科学基金会;
关键词
elementary symmetric function; harmonic series;
D O I
10.1515/ms-2015-0064
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Erdos and Niven proved that for any positive integers m and d, there are only finitely many positive integers n for which one or more of the elementary symmetric functions of 1/m, 1/(m + d),...,1/(m + nd) are integers. In this paper, we show that if n >= 2, then none of the elementary symmetric functions of 1, 1/3,..., 1/(2n - 1) is an integer. (C) 2015 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:957 / 962
页数:6
相关论文
共 50 条
  • [21] Isometric full embeddings of DW(2n-1, q) into DH(2n-1, q2)
    De Bruyn, B.
    FINITE FIELDS AND THEIR APPLICATIONS, 2008, 14 (01) : 188 - 200
  • [22] MRC-Based RNS Reverse Converters for the Four-Moduli Sets {2n+1, 2n-1, 2n, 22n+1-1} and {2n+1, 2n-1, 22n, 22n+1-1}
    Sousa, Leonel
    Antao, Samuel
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2012, 59 (04) : 244 - 248
  • [23] 老师,为什么1+2+2~2+2~3+…+2n-1=2~n-1
    廖帝学
    中学数学杂志, 2008, (02) : 18 - 19
  • [24] An improved reverse converter for the moduli set {2n-1, 2n, 2n+1, 2n+1-1}
    Hosseinzadeh, Mehdi
    Molahosseini, Amir Sabbagh
    Navi, Keivan
    IEICE ELECTRONICS EXPRESS, 2008, 5 (17) : 672 - 677
  • [25] Efficient methods in converting to modulo 2n+1 and 2n-1
    Manochehri, Kooroush
    Pourmozafari, Saadat
    Sadeghian, Babak
    THIRD INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: NEW GENERATIONS, PROCEEDINGS, 2006, : 178 - +
  • [26] On A(1)n-1, B(1)n, C(1)n, D(1)n, A(2)2n, A(2)2n-1, and D(2)n+1 reflection K-matrices
    Malara, R.
    Lima-Santos, A.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2006,
  • [27] Shifter circuits for {2n+1, 2n, 2n-1} RNS
    Bakalis, D.
    Vergos, H. T.
    ELECTRONICS LETTERS, 2009, 45 (01) : 27 - 28
  • [28] Efficient Reverse Converter Designs for the New 4-Moduli Sets {2n-1, 2n, 2n+1, 22n+1-1} and {2n-1, 2n+1, 22n, 22n+1} Based on New CRTs
    Molahosseini, Amir Sabbagh
    Navi, Keivan
    Dadkhah, Chitra
    Kavehei, Omid
    Timarchi, Somayeh
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2010, 57 (04) : 823 - 835
  • [29] A New RNS Scaler for {2n-1, 2n, 2n+1}
    Low, Jeremy Yung Shern
    Chang, Chip Hong
    2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 1431 - 1434
  • [30] A reverse converter for the 4-moduli superset {2n-1, 2n, 2n+1, 2n+1+1}
    Bhardwaj, M
    Srikanthan, T
    Clarke, CT
    14TH IEEE SYMPOSIUM ON COMPUTER ARITHMETIC, PROCEEDINGS, 1999, : 168 - 175