CURVATURE AND INFERENCE FOR MAXIMUM LIKELIHOOD ESTIMATES

被引:3
|
作者
Efron, Bradley [1 ]
机构
[1] Stanford Univ, Dept Stat, Sequoia Hall,390 Serra Mall, Stanford, CA 94305 USA
来源
ANNALS OF STATISTICS | 2018年 / 46卷 / 04期
基金
美国国家科学基金会;
关键词
Observed information; g-modeling; region of stability; curved exponential families; regularized MLE; EXPONENTIAL-FAMILIES; INFORMATION; GEOMETRY; REGRESSION; DENSITIES;
D O I
10.1214/17-AOS1598
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Maximum likelihood estimates are sufficient statistics in exponential families, but not in general. The theory of statistical curvature was introduced to measure the effects of MLE insufficiency in one-parameter families. Here, we analyze curvature in the more realistic venue of multiparameter families-more exactly, curved exponential families, a broad class of smoothly defined nonexponential family models. We show that within the set of observations giving the same value for the MLE, there is a "region of stability" outside of which the MLE is no longer even a local maximum. Accuracy of the MLE is affected by the location of the observation vector within the region of stability. Our motivating example involves "g-modeling," an empirical Bayes estimation procedure.
引用
收藏
页码:1664 / 1692
页数:29
相关论文
共 50 条
  • [21] Inference of Huge Trees under Maximum Likelihood
    Izquierdo-Carrasco, Fernando
    Stamatakis, Alexandros
    2012 IEEE 26TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS & PHD FORUM (IPDPSW), 2012, : 2490 - 2493
  • [22] Approximate Selective Inference via Maximum Likelihood
    Panigrahi, Snigdha
    Taylor, Jonathan
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (544) : 2810 - 2820
  • [23] An investigation of irreproducibility in maximum likelihood phylogenetic inference
    Xing-Xing Shen
    Yuanning Li
    Chris Todd Hittinger
    Xue-xin Chen
    Antonis Rokas
    Nature Communications, 11
  • [24] An investigation of irreproducibility in maximum likelihood phylogenetic inference
    Shen, Xing-Xing
    Li, Yuanning
    Hittinger, Chris Todd
    Chen, Xue-xin
    Rokas, Antonis
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [25] ASYMPTOTIC PROPERTIES OF MAXIMUM AND QUASI-MAXIMUM LIKELIHOOD ESTIMATES
    RUBIN, H
    ANNALS OF MATHEMATICAL STATISTICS, 1947, 18 (02): : 298 - 299
  • [26] MAXIMUM ENTROPY AND MAXIMUM LIKELIHOOD SPECTRAL ESTIMATES OF GEOMAGNETIC VARIATIONS
    PECOVA, J
    PEC, K
    STUDIA GEOPHYSICA ET GEODAETICA, 1975, 19 (02) : 188 - 191
  • [27] MLREML: A computer program for the inference of spatial covariance parameters by maximum likelihood and restricted maximum likelihood
    PardoIguzquiza, E
    COMPUTERS & GEOSCIENCES, 1997, 23 (02) : 153 - 162
  • [28] 2 INSTRUCTIVE EXAMPLES OF MAXIMUM LIKELIHOOD ESTIMATES
    HOYT, JP
    AMERICAN STATISTICIAN, 1969, 23 (02): : 14 - +
  • [29] Maximum Likelihood Estimates for the Schnabel Census with Plants
    Goudie, I. B. J.
    Gormley, R.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (20) : 3704 - 3715
  • [30] Bootstrap for Maximum Likelihood Estimates of PARMA Coefficients
    Dudek, Anna E.
    Hurd, Harry
    Wojtowicz, Wioletta
    CYCLOSTATIONARITY: THEORY AND METHODS, 2014, : 15 - 22