A phase-field simulation of the solidification process under compression

被引:4
|
作者
Ren, Jian-kun [1 ,2 ]
Chen, Yun [3 ]
Cao, Yan-fei [3 ]
Xu, Bin [1 ,3 ]
Sun, Ming-yue [1 ,3 ]
Li, Dian-zhong [3 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Key Lab Nucl Mat & Safety Assessment, Shenyang 110016, Peoples R China
[2] Univ Sci & Technol China, Sch Mat Sci & Engn, Shenyang 110016, Peoples R China
[3] Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res, Shenyang 110016, Peoples R China
基金
中国国家自然科学基金;
关键词
Phase-field simulation; Semi-solid deformation; Solidification; Dendrite; SYNCHROTRON TOMOGRAPHIC QUANTIFICATION; SAMPLE DIRECTIONAL SOLIDIFICATION; DENDRITE GROWTH; ALLOY SOLIDIFICATION; SOLID DEFORMATION; MODELING MOTION; MICROSTRUCTURE; FORMULATION; BOUNDARIES; ALGORITHM;
D O I
10.1016/j.jmrt.2021.05.081
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Semi-solid metal forming processes cover a wide variety of technologies in manufacturing, generally leading to non-dendritic microstructures typified by rosette-like or spherical grains. With the contemporary experimental methods, researchers still cannot completely understand the formation of such microstructures. However, as a process coupled with dendritic growth, deformation and flow, the microstructural evolution during the semisolid deformation has been scarcely simulated. With the vector-valued phase-field method, two-phase flow model and an innovative design of boundary conditions, the current research numerically compressed a single dendrite into a less dendritic polycrystalline structure. The resulting microstructure was consistent with the metallographic analysis and the simulation enables a clear observation of the whole process: the ripening transformed the highly branched shape into a less dendritic one; the subsequent deformation crushed the dendrite into a stubby structure; eventually, the deformation caused the boundaries inside this structure, dividing the solid into multiple grains. The analysis on the boundaries inside the deformed solid offered further insight into the formation of non-dendritic structures. These boundaries showed a tendency towards melting with increasing misorientation, demonstrating the possibility of the grain boundary wetting, which was considered as the source of the fragmentation when the dendrite undergoes deformation, but is hard to validate in situ even with the cutting-edge X-ray imaging technique. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:2210 / 2219
页数:10
相关论文
共 50 条
  • [41] The phase-field simulation of the grain growth under external field
    Zhang, Lili
    Gao, Ming
    Tang, Shaonan
    MATERIALS AND MANUFACTURING, PTS 1 AND 2, 2011, 299-300 : 69 - +
  • [42] Fluctuations in the phase-field model of solidification
    Pavlik, SG
    Sekerka, RF
    PHYSICA A, 2000, 277 (3-4): : 415 - 431
  • [43] On the phase-field modeling of rapid solidification
    Gu, Yijia
    He, Xiaoming
    Han, Daozhi
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 199 (199)
  • [44] Phase-field simulation of solidification and solid-state transformations in multicomponent steels
    Boettger, Bernd
    Apel, Markus
    Eiken, Janin
    Schaffnit, Philippe
    Steinbach, Ingo
    STEEL RESEARCH INTERNATIONAL, 2008, 79 (08) : 608 - 616
  • [45] GPU-accelerated phase-field simulation of dendritic solidification in a binary alloy
    Yamanaka, Akinori
    Aoki, Takayuki
    Ogawa, Satoi
    Takaki, Tomohiro
    JOURNAL OF CRYSTAL GROWTH, 2011, 318 (01) : 40 - 45
  • [46] Phase-field simulation of secondary dendrite growth in directional solidification of binary alloys
    Li Feng
    Nini Lu
    Yalong Gao
    Changsheng Zhu
    Junhe Zhong
    Rongzhen Xiao
    China Foundry, 2019, 16 (02) : 97 - 104
  • [47] Phase-field simulation of secondary dendrite growth in directional solidification of binary alloys
    Li Feng
    Ni-ni Lu
    Ya-long Gao
    Chang-sheng Zhu
    Jun-he Zhong
    Rong-zhen Xiao
    China Foundry, 2019, 16 : 97 - 104
  • [48] Phase-field simulation of secondary dendrite growth in directional solidification of binary alloys
    Li Feng
    Ni-ni Lu
    Ya-long Gao
    Chang-sheng Zhu
    Jun-he Zhong
    Rong-zhen Xiao
    China Foundry, 2019, (02) : 97 - 104
  • [49] An adaptive mesh method for phase-field simulation of alloy solidification in three dimensions
    Bollada, P. C.
    Jimack, P. K.
    Mullis, A. M.
    MCWASP XIV: INTERNATIONAL CONFERENCE ON MODELLING OF CASTING, WELDING AND ADVANCED SOLIDIFICATION PROCESSES, 2015, 84
  • [50] An Analysis of the Physical Properties of Multicomponent Alloys on the Simulation of Solidification by Phase-Field Model
    Salvino, I. M.
    Jacome, P. A. D.
    Ferreira, A. F.
    Ferreira, I. L.
    ADVANCED MATERIALS FORUM VI, PTS 1 AND 2, 2013, 730-732 : 703 - 708